1887

Abstract

Two anaerobic, pigmented, non-spore-forming, Gram-stain-negative, rod-shaped strains isolated from the human oral cavity, OMA31 and OMA130, were characterized by determining their phenotypic and biochemical features, cellular fatty acid profiles and phylogenetic positions based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the new isolates belonged to a single species of the genus . The two isolates showed 100 % 16S rRNA gene sequence similarity with each other and were most closely related to ATCC 25611 with 96.4 % 16S rRNA gene sequence similarity; the next most closely related strains to the isolates were AHN 10371 (96.1 %) and JCM 15124 (95.3 %). Phenotypic and biochemical characteristics of the isolates were the same as those of JCM 12248, JCM 15124 and JCM 12250. The isolates could be differentiated from JCM 11140 by mannose fermentation and -fucosidase activity. Conventional biochemical tests were unable to differentiate the new isolates from , and . However, gene sequence analysis suggested that strain OMA31 was not a representative of , , or . Based on these data, a novel species of the genus , sp. nov., is proposed, with OMA31 (=JCM 15754=CCUG 57723) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012831-0
2010-03-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/500.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012831-0&mimeType=html&fmt=ahah

References

  1. Brousseau R., Hill J. E., Préfontaine G., Goh S.-H., Harel J., Hemmingsen S. M. 2001; Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Appl Environ Microbiol 67:4828–4833 [CrossRef]
    [Google Scholar]
  2. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  3. Goh S. H., Santucci Z., Kloos W. E., Faltyn M., George C. G., Driedger D., Hemmingsen S. M. 1997; Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 35:3116–3121
    [Google Scholar]
  4. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M. 2004; cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675 [CrossRef]
    [Google Scholar]
  5. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  6. Könönen E., Eerola E., Frandsen E. V. G., Jalava J., Mättö J., Salmenlinna S., Jousimies-Somer H. 1998; Phylogenetic characterization and proposal of a new pigmented species to the genus Prevotella : Prevotella pallens sp. nov. Int J Syst Bacteriol 48:47–51 [CrossRef]
    [Google Scholar]
  7. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  8. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors; 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [CrossRef]
    [Google Scholar]
  9. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  10. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  11. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. 1985; An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem 260:2605–2608
    [Google Scholar]
  12. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  15. Sakamoto M., Suzuki M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2004; Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54:877–883 [CrossRef]
    [Google Scholar]
  16. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2005a; Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55:815–819 [CrossRef]
    [Google Scholar]
  17. Sakamoto M., Umeda M., Ishikawa I., Benno Y. 2005b; Prevotella multisaccharivorax sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55:1839–1843 [CrossRef]
    [Google Scholar]
  18. Sakamoto M., Ohkusu K., Masaki T., Kako H., Ezaki T., Benno Y. 2007; Prevotella pleuritidis sp. nov., isolated from pleural fluid. Int J Syst Evol Microbiol 57:1725–1728 [CrossRef]
    [Google Scholar]
  19. Sakamoto M., Kumada H., Hamada N., Takahashi Y., Okamoto M., Bakir M. A., Benno Y. 2009; Prevotella falsenii sp. nov., a Prevotella intermedia -like organism isolated from monkey dental plaque. Int J Syst Evol Microbiol 59:319–322 [CrossRef]
    [Google Scholar]
  20. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes , 2nd edn. pp 3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  21. Shah H. N., Gharbia S. E. 1992; Biochemical and chemical studies on strains designated Prevotella intermedia and proposal of a new pigmented species, Prevotella nigrescens sp. nov. Int J Syst Bacteriol 42:542–546 [CrossRef]
    [Google Scholar]
  22. Slots J., Reynolds H. S. 1982; Long-wave UV light fluorescence for identification of black-pigmented Bacteroides spp. J Clin Microbiol 16:1148–1151
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012831-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012831-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error