1887

Abstract

and related species form the biggest but least well-defined clade in the whole 16S rRNA gene tree. Multilocus sequence analysis (MLSA) has shown promising potential for refining systematics. In this investigation, strains of 18 additional clade species were analysed and data from a previous pilot study were integrated in a larger MLSA phylogeny. The results demonstrated that MLSA of five housekeeping genes (, , , and ) is better than the previous six-gene scheme, as it provides equally good resolution and stability and is more cost-effective; MLSA using three or four of the genes also shows good resolution and robustness for differentiating most of the strains and is therefore of value for everyday use. MLSA is more suitable for discriminating strains that show >99 % 16S rRNA gene sequence similarity. DNA–DNA hybridization (DDH) between strains with representative MLSA distances revealed a strong correlation between the data of MLSA and DDH. The 70 % DDH value for current species definition corresponds to a five-gene MLSA distance of 0.007, which could be considered as the species cut-off for the clade. It is concluded that the MLSA procedure can be a practical, reliable and robust alternative to DDH for the identification and classification of streptomycetes at the species and intraspecies levels. Based on the data from MLSA and DDH, as well as cultural and morphological characteristics, 18 species and three subspecies of the clade are considered to be later heterotypic synonyms of 11 genomic species: and as synonyms of ; as a synonym of ; as a synonym of ; as a synonym of ; subsp. as a synonym of ; , , and as synonyms of ; as a synonym of ; , ‘’ and as synonyms of ; as a synonym of ; , subsp. , subsp. and as synonyms of ; and and as synonyms of

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012419-0
2010-03-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/696.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012419-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Wagner M. 2008; Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440
    [Google Scholar]
  2. Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F. 2004; Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635 [CrossRef]
    [Google Scholar]
  3. Akaike H. 1974; A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723 [CrossRef]
    [Google Scholar]
  4. Antony-Babu S., Stach J. E., Goodfellow M. 2008; Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie van Leeuwenhoek 94:63–74
    [Google Scholar]
  5. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  6. Coenye T., Gevers D., Van de Peer Y., Vandamme P., Swings J. 2005; Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167
    [Google Scholar]
  7. Cohan F. M., Koeppel A. F. 2008; The origins of ecological diversity in prokaryotes. Curr Biol 18:1024–1034 [CrossRef]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 2008 phylip (phylogeny inference package) version 3.68. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. & other authors; 2005; Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739 [CrossRef]
    [Google Scholar]
  12. Gevers D., Dawyndt P., Vandamme P., Willems A., Vancanneyt M., Swings J., De Vos P. 2006; Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci 361:1911–1916
    [Google Scholar]
  13. Guo Y., Zheng W., Rong X., Huang Y. 2008; A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159 [CrossRef]
    [Google Scholar]
  14. He L., Li W., Huang Y., Wang L., Liu Z., Lanoot B., Vancanneyt M., Swings J. 2005; Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:1939–1944
    [Google Scholar]
  15. Kämpfer P. 2006; The family Streptomycetaceae . Part I. Taxonomy. In The Prokaryotes , 3rd edn. vol 3 pp 538–604 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  17. Koeppel A., Perry E. B., Sikorski J., Krizanc D., Warner A., Ward D. M., Rooney A. P., Brambilla E., Connor N. other authors 2008; Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A 105:2504–2509 [CrossRef]
    [Google Scholar]
  18. Lanoot B., Vancanneyt M., Hoste B., Vandemeulebroecke K., Cnockaert M. C., Dawyndt P., Liu Z., Huang Y., Swings J. 2005a; Grouping of streptomycetes using 16S-ITS RFLP fingerprinting. Res Microbiol 156:755–762 [CrossRef]
    [Google Scholar]
  19. Lanoot B., Vancanneyt M., Van Schoor A., Liu Z., Swings J. 2005b Reclassification of Streptomyces nigrifaciens as a later synonym of Streptomyces flavovirens ; Streptomyces citreofluorescens , Streptomyces chrysomallus subsp. chrysomallus and Streptomyces fluorescens as later synonyms of Streptomyces anulatus ; Streptomyces chibaensis as a later synonym of Streptomyces corchorusii ; Streptomyces flaviscleroticus as a later synonym of Streptomyces minutiscleroticus ; and Streptomyces lipmanii , Streptomyces griseus subsp. alpha , Streptomyces griseus subsp. cretosus and Streptomyces willmorei as later synonyms of Streptomyces microflavus . Int J Syst Evol Microbiol 55, 729–731
  20. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. 1992 International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Liu Z., Shi Y., Zhang Y., Zhou Z., Lu Z., Li W., Huang Y., Rodriguez C., Goodfellow M. 2005; Classification of Streptomyces griseus ; (Krainsky 1914; Waksman and Henrici 1948 and related species and the transfer of ‘ Microstreptospora cinerea ’ to the genus Streptomyces as Streptomyces yanii sp. nov. Int J Syst Evol Microbiol 55:1605–1610 [CrossRef]
    [Google Scholar]
  22. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A. 2007; Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503 [CrossRef]
    [Google Scholar]
  23. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium ). Int J Syst Evol Microbiol 58:200–214 [CrossRef]
    [Google Scholar]
  24. Mignard S., Flandrois J. P. 2008; A seven-gene, multilocus, genus-wide approach to the phylogeny of mycobacteria using supertrees. Int J Syst Evol Microbiol 58:1432–1441 [CrossRef]
    [Google Scholar]
  25. Naser S. M., Vancanneyt M., Hoste B., Snauwaert C., Vandemeulebroecke K., Swings J. 2006; Reclassification of Enterococcus flavescens Pompei et al. 1992 as a later synonym of Enterococcus casseliflavus ( ex Vaughan et al. 1979) Collins et al. 1984 and Enterococcus saccharominimus Vancanneyt et al. 2004 as a later synonym of Enterococcus italicus Fortina et al. 2004. Int J Syst Evol Microbiol 56:413–416 [CrossRef]
    [Google Scholar]
  26. Okanishi M. 1972; An evaluation of taxonomic criteria in streptomycetes on the basis of deoxyribonucleic acid homology. J Gen Microbiol 72:49–58 [CrossRef]
    [Google Scholar]
  27. Posada D., Crandall K. A. 1998; Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  28. Rong X., Guo Y., Huang Y. 2009; Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA–DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 32:314–322 [CrossRef]
    [Google Scholar]
  29. Rosselló-Mora R. 2006; DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In Molecular Identification, Systematics and Population Structure of Prokaryotes pp 23–50 Edited by Stackebrandt E. Heidelberg: Springer;
    [Google Scholar]
  30. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  32. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  33. Swofford D. L. 2002 paup*: Phylogenetic analysis using parsimony (and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  35. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  37. Wu X., Wen Y., Qian C., Li O., Fang H., Chen W. 2008; Taxonomic study of a chromomycin-producing strain and reclassification of Streptomyces cavourensis subsp. washingtonensis as a later synonym of Streptomyces griseus . Int J Syst Evol Microbiol 58:2783–2787
    [Google Scholar]
  38. Young J. M., Park D. C., Shearman H. M., Fargier E. 2008; A multilocus sequence analysis of the genus Xanthomonas . Syst Appl Microbiol 31:366–377 [CrossRef]
    [Google Scholar]
  39. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012419-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012419-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error