sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost Free

Abstract

A Gram-stain-positive, obligately alkaliphilic bacterium designated strain GMBE 72 was isolated from mushroom compost from Yalova, located in the Marmara region of Turkey. Cells were aerobic, straight rods and they formed subterminal to terminal ellipsoidal endospores. The isolate was catalase-positive, oxidase-negative and motile and contained a type A1 peptidoglycan based on -diaminopimelic acid. The strain grew at pH 8.0–12.5. The major cellular fatty acid was anteiso-C. The genomic DNA GC content was 40.2 mol%. Phylogenetic analyses based on 16S rRNA gene sequencing showed that strain GMBE 72 belonged to the genus and exhibited 98.2 % sequence similarity to DSM 8715. DNA–DNA reassociation was 56 % between GMBE 72 and DSM 8715. According to our polyphasic characterization, strain GMBE 72 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GMBE 72 (=DSM 21297 =JCM 15719).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012369-0
2010-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1590.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012369-0&mimeType=html&fmt=ahah

References

  1. Agnew M. D., Koval S. F., Jarrell K. F. 1995; Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18:221–230 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Borsodi A. K., Márialigeti K., Szabó G., Palatinszky M., Pollák B., Kéki Z., Kovács A. L., Schumann P., Tóth E. M. 2008; Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 58:845–851 [CrossRef]
    [Google Scholar]
  4. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol 2 pp 1105–1140 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Denizci A. A., Kazan D., Abeln E. C. A., Erarslan A. 2004; Newly isolated Bacillus clausii GMBAE 42: an alkaline protease producer capable to grow under highly alkaline conditions. J Appl Microbiol 96:320–327 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Fritze D. 1996; Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46:98–101 [CrossRef]
    [Google Scholar]
  8. Fritze D., Flossdorf J., Claus D. 1990; Taxonomy of alkaliphilic Bacillus strains. Int J Syst Bacteriol 40:92–97 [CrossRef]
    [Google Scholar]
  9. Ghosh A., Bhardwaj M., Satyanarayana T., Khurana M., Mayilraj S., Jain R. K. 2007; Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:238–242 [CrossRef]
    [Google Scholar]
  10. Gordon R. E., Haynes W. C., Pang C. H.-N. 1973 The genus Bacillus (Agriculture Handbook no 427 Washington, DC: Agricultural Research Service, United States Department of Agriculture;
    [Google Scholar]
  11. Gupta R., Beg Q. K., Lorenz P. 2002; Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32 [CrossRef]
    [Google Scholar]
  12. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  13. Horikoshi K. 1996; Alkaliphiles – from an industrial point of view. FEMS Microbiol Rev 18:259–270
    [Google Scholar]
  14. Horikoshi K. 1999; Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750
    [Google Scholar]
  15. Jasvir S., Navdeep G., Devasahayam G., Sahoo D. K. 1999; Studies on alkaline protease produced by Bacillus sp. NG312. Appl Biochem Biotechnol 76:57–63 [CrossRef]
    [Google Scholar]
  16. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  18. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University;
    [Google Scholar]
  19. Kumar C. G., Takagi H. 1999; Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594 [CrossRef]
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  21. Lee J.-C., Lee G. S., Park D.-J., Kim C.-J. 2008; Bacillus alkalitelluris sp. nov., an alkaliphilic bacterium isolated from sandy soil. Int J Syst Evol Microbiol 58:2629–2634 [CrossRef]
    [Google Scholar]
  22. Lim J.-M., Jeon C. O., Lee S.-M., Lee J.-C., Xu L.-H., Jiang C.-L., Kim C.-J. 2006a; Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56:373–377 [CrossRef]
    [Google Scholar]
  23. Lim J.-M., Jeon C. O., Kim C.-J. 2006b; Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56:2903–2908 [CrossRef]
    [Google Scholar]
  24. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . FEMS Microbiol Lett 117:61–66 [CrossRef]
    [Google Scholar]
  25. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  26. Nogi Y., Takami H., Horikoshi K. 2005; Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315 [CrossRef]
    [Google Scholar]
  27. Olivera N., Sineriz F., Breccia J. D. 2005; Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447 [CrossRef]
    [Google Scholar]
  28. Oner M. N. K., Denizci A. A., Kazan D., Erarslan A. 2006 A serine alkaline protease from a newly isolated obligate alkaliphilic Bacillus sp. GMBAE 72. FEBS J 273 (Suppl. 1), 335
  29. Saeki K., Hitomi J., Okuda M., Hatada Y., Kageyama Y., Takaiwa M., Kubota H., Hagihara H. 2002; A novel species of alkaliphilic Bacillus that produced an oxidatively stable alkaline serine protease. Extremophiles 6:65–72 [CrossRef]
    [Google Scholar]
  30. Spanka R., Fritze D. 1993; Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 43:150–156 [CrossRef]
    [Google Scholar]
  31. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis , sp. nov., and Bacillus selenitireducens , sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  32. Takami H., Horikoshi K. 2000; Analyses of the genome an alkaliphilic Bacillus strains from an industrial point of view. Extremophiles 4:99–108 [CrossRef]
    [Google Scholar]
  33. Takami H., Krulwich T. A. 2000; Reidentification of facultatively alkaliphilic Bacillus firmus OF4 as Bacillus pseudofirmus OF4. Extremophiles 4:19–22 [CrossRef]
    [Google Scholar]
  34. Takami H., Nogi Y., Horikoshi K. 1999; Reidentification of the keratinase producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans . Extremophiles 3:293–296 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  36. Vedder A. 1934; Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingbodems. Antonie van Leeuwenhoek 1:141–147 (in Dutch [CrossRef]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  38. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H. 1998; Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571 [CrossRef]
    [Google Scholar]
  39. Yumoto I., Yamaga S., Sogabe Y., Nodasaka Y., Matsuyama H., Nakajima K., Suemori A. 2003; Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m -hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012369-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012369-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed