1887

Abstract

A Gram-staining-positive, aerobic, non-motile and rod-shaped bacterium, designated P27, was isolated from a traditional fermented seafood. The isolate grew optimally with 0–2.0 % (w/v) NaCl and at pH 6–7 and 30 °C. The predominant menaquinones were MK-12 and MK-11. The major cellular fatty acids were anteiso-C, anteiso-C and iso-C. The major cell-wall sugars were galactose, mannose and rhamnose. The peptidoglycan amino acids of strain P27 were 2,4-diaminobutyric acid, alanine, glutamic acid and glycine. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The genomic DNA G+C content of strain P27 was 69.0 mol%. Based on its 16S rRNA gene sequence, strain P27 showed highest pairwise similarity with subsp. JCM 9083 (97.0 % similarity). Based on phenotypic, genotypic and phylogenetic studies, strain P27 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is P27 (=KCTC 19593 =JCM 15913).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012294-0
2010-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1056.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012294-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Denner E. B. M., Lubitz W. 1996; Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol 47:3–38 [CrossRef]
    [Google Scholar]
  2. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria. London: Cambridge University Press;
    [Google Scholar]
  3. Dorofeeva L. V., Krausova V. I., Evtushenko L. I., Tiedje J. M. 2003; Agromyces albus sp. nov., isolated from a plant ( Androsace sp.).. Int J Syst Evol Microbiol 53:1435–1438 [CrossRef]
    [Google Scholar]
  4. Gledhill W. E., Casida L. E. Jr 1969 Predominant catalase-negative soil bacteria. III. Agromyces , gen. n.,microorganisms intermediary to Actinomyces and Nocardia Appl Microbiol 18:340–349
    [Google Scholar]
  5. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  6. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  7. Jung S.-Y., Lee S.-Y., Oh T.-K., Yoon J.-H. 2007; Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum . Int J Syst Evol Microbiol 57:588–593 [CrossRef]
    [Google Scholar]
  8. Jurado V., Groth I., Gonzalez J. M., Laiz L., Saiz-Jimenez C. 2005a; Agromyces salentinus sp. nov. and Agromyces neolithicus sp. nov. Int J Syst Evol Microbiol 55:153–157 [CrossRef]
    [Google Scholar]
  9. Jurado V., Groth I., Gonzalez J. M., Laiz L., Schuetze B., Saiz-Jimenez C. 2005b; Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 55:871–875 [CrossRef]
    [Google Scholar]
  10. Jurado V., Groth I., Gonzalez J. M., Laiz L., Saiz-Jimenez C. 2005c; Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. Int J Syst Evol Microbiol 55:1897–1901 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  14. Li W.-J., Zhang L.-P., Xu P., Cui X.-L., Xu L.-H., Zhang Z., Schumann P., Stackebrandt E., Jiang C.-L. 2003; Agromyces aurantiacus sp. nov., isolated from a Chinese primeval forest. Int J Syst Evol Microbiol 53:303–307 [CrossRef]
    [Google Scholar]
  15. Rivas R., Trujillo M. E., Mateos P. F., Martínez-Molina E., Velázquez E. 2004; Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol 54:1987–1990 [CrossRef]
    [Google Scholar]
  16. Roh S. W., Sung Y., Nam Y. D., Chang H. W., Kim K. H., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W. 2008; Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol 46:40–44 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  21. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  22. Stackebrandt E., Liesack W., Goebel B. M. 1993; Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236
    [Google Scholar]
  23. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1996; Agromyces mediolanus sp. nov., nom. rev., comb. nov., a species for ‘ Corynebacterium mediolanum ’ Mamoli 1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in the cell wall peptidoglycan. Int J Syst Bacteriol 46:88–93 [CrossRef]
    [Google Scholar]
  24. Takeuchi M., Hatano K. 2001; Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 51:1529–1537
    [Google Scholar]
  25. Tittsler R. P., Sandholzer L. A. 1936; Use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575
    [Google Scholar]
  26. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef]
    [Google Scholar]
  27. Yoon J. H., Schumann P., Kang S. J., Park S., Oh T. K. 2008; Agromyces terreus sp. nov., isolated from soil. Int J Syst Evol Microbiol 58:1308–1312 [CrossRef]
    [Google Scholar]
  28. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V. 1992; Emended description of the genus Agromyces and description of Agromyces cerinus subsp.cerinus sp. nov., subsp. nov., Agromycescerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 42:635–641 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012294-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012294-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error