1887

Abstract

Four Gram-stain-positive, aerobic or facultatively anaerobic, motile, endospore-forming, rod-shaped bacteria, designated strains FeL05, FeL11, Fek19 and Fek21, were isolated from seeds of hybrid rice ( L. Jinyou 611), and their taxonomic positions were determined using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four strains were members of the genus . They showed 95.4 % sequence similarity or less with strains of other species. The G+C content of strain FeL05 was found to be 53.3 mol%. Its predominant respiratory quinone was MK-7. The predominant cellular fatty acids were anteiso-C (61.7 %), C (10.9 %), iso-C (7.0 %), anteiso-C (6.7 %) and iso-C (5.2 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain FeL05 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain FeL05 (=ACCC 10718 =CGMCC 1.8907 =DSM 22170).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012179-0
2010-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1266.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012179-0&mimeType=html&fmt=ahah

References

  1. Beatty P. H., Jensen S. E. 2002; Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans , the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169 [CrossRef]
    [Google Scholar]
  2. Chung Y. R., Kim C. H., Hwang I., Chun J. 2000; Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500 [CrossRef]
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol 2 pp 1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  5. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  6. Eck R. V., Dayhoff M. O. 1966 Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Helbig J. 2001; Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191. J Phytopathol 149:265–273 [CrossRef]
    [Google Scholar]
  10. Hucker G. J., Conn H. J. 1923; Method of Gram staining. N Y State Agric Exp Stn Tech Bull 93:3–37
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  12. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  13. Lebuhn M., Heulin T., Hartmann A. 1997; Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334 [CrossRef]
    [Google Scholar]
  14. Lee J.-C., Yoon K.-H. 2008; Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int J Syst Evol Microbiol 58:612–616 [CrossRef]
    [Google Scholar]
  15. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N -heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  16. Maes M., Baeyen S. 2003; Experiences and perspectives for the use of a Paenibacillus strain as plant protectant. Commun Agric Appl Biol Sci 68:457–462
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of base composition of deoxyribonucleic acid from its denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas , Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  20. Priest F. G. 1977; Extracellular enzyme synthesis in the genus Bacillus . Bacteriol Rev 41:711–753
    [Google Scholar]
  21. Qiu F. B., Huang Y., Sun L., Zhang X. X., Liu Z. H., Song W. 2007; Leifsonia ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 57:405–408 [CrossRef]
    [Google Scholar]
  22. Rivas R., Gutiérrez C., Abril A., Mateos P. F., Martínez-Molina E., Ventosa A., Velázquez E. 2005; Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum . Int J Syst Evol Microbiol 55:1305–1309 [CrossRef]
    [Google Scholar]
  23. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , Technical note 101 Newark, DE: MIDI, Inc;
    [Google Scholar]
  26. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  27. Slepecky R., Hemphill E. 1992; The genus Bacillus – nonmedical. In The Prokaryotes , 2nd edn. pp 1663–1696 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  30. Ten L. N., Baek S.-H., Im W.-T., Lee M., Oh H. W., Lee S.-T. 2006; Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2677–2681 [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Timmusk S., Wagner E. G. 1999; The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959 [CrossRef]
    [Google Scholar]
  33. Timmusk S., Nicander B., Granhall U., Tillberg E. 1999; Cytokinin production by Paenibacillus polymyxa . Soil Biol Biochem 31:1847–1852 [CrossRef]
    [Google Scholar]
  34. von der Weid I., Alviano D. S., Santos A. L., Soares R. M., Alviano C. S., Seldin L. 2003; Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151 [CrossRef]
    [Google Scholar]
  35. Weon-Taek S., Kahng G. G., Nam S. H., Choi S. D., Suh H. H., Kim S. W., Park Y. H. 1999; Isolation and characterization of a novel exopolysaccharide-producing Paenibacillus sp. WN9 KCTC 8951P. J Microbiol Biotechnol 9:820–825
    [Google Scholar]
  36. Wu C., Lu X., Qin M., Wang Y., Ruan J. 1989; The analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing) ] 16176–178
    [Google Scholar]
  37. Yoon J. H., Oh H. M., Yoon B. D., Kang K. H., Park Y. H. 2003; Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53:295–301 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012179-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012179-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error