A strictly anaerobic, mesophilic and aminolytic strain (WN036) was isolated from a methanogenic reactor treating waste from cattle farms. Cells were Gram-positive cocci, often occurred in pairs and were non-motile. Although spore formation was not confirmed by microscopic observation of cells, the strain produced thermotolerant cells. The optimum temperature for growth was 35–37 °C and the optimum pH was 6.7. Oxidase, catalase and nitrate-reducing activities were negative. The novel strain did not ferment carbohydrates and grew in PY medium without additional substrates. The strain utilized -glutamate, -glutamine, -histidine and -arginine as growth substrates. Major fermentation products were acetate and butyrate with a small amount of propionate. The genomic DNA G+C content was 32.5 mol%. The major cellular fatty acids were C 8, C 7 DMA and C. The diagnostic diamino acid of the cell-wall peptidoglycan was lysine. Glutamic acid, glycine, alanine and aspartic acid were also detected in the cell-wall peptidoglycan. On the basis of 16S rRNA gene sequences, the most closely related species to strain WN036 were ATCC 14965 (89.8 %) and ATCC 29427 (89.6 %). Based on the differences in the phenotypic and phylogenetic characteristics of strain WN036 compared with those of closely related species, a novel genus and species, gen. nov., sp. nov., is proposed. The type strain is WN036 (=JCM 15094=DSM 21120).


Article metrics loading...

Loading full text...

Full text loading...



  1. Akasaka, H., Izawa, T., Ueki, K. & Ueki, A.(2003a). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43, 149–161.[CrossRef] [Google Scholar]
  2. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y. & Ueki, K.(2003b).Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 53, 1991–1998.[CrossRef] [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  4. Cato, E. P., George, W. L. & Finegold, S. M.(1986). Genus Clostridium Prazmowski 1880, 23AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1141–1200. Edited by P. H. A. Sneath. Baltimore: Williams & Wilkins.
  5. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E.(1994). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef] [Google Scholar]
  6. Ezaki, T., Yamamoto, N., Ninomiya, K., Suzuki, S. & Yabuuchi, E.(1983). Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bacteriol 33, 683–698.[CrossRef] [Google Scholar]
  7. Ezaki, T., Kawamura, Y., Li, N., Li, Z.-Y., Zhao, L. & Shu, S.(2001). Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 51, 1521–1528. [Google Scholar]
  8. Finegold, S. M., Song, Y. & Liu, C.(2002). Taxonomy – general comments and update on taxonomy of clostridia and anaerobic cocci. Anaerobe 8, 283–285.[CrossRef] [Google Scholar]
  9. Harper, J. J. & Davis, G. H. G.(1979). Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29, 56–58.[CrossRef] [Google Scholar]
  10. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  11. Holdeman Moore, L. V., Johnson, J. L. & Moore, W. E. C.(1986). Genus Peptostreptococcus Kluyver and van Niel 1936, 401AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1083–1092. Edited by P. H. A. Sneath. Baltimore: Williams & Wilkins.
  12. Hungate, R. E.(1966).The Rumen and its Microbes. NY: Academic Press.
  13. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  14. Lambert, M. A. & Armfield, A. Y.(1979). Differentiation of Peptococcus and Peptostreptococcus by gas-liquid chromatography of cellular fatty acids and metabolic products. J Clin Microbiol 10, 464–476. [Google Scholar]
  15. Li, N., Hashimoto, Y., Adnan, S., Miura, H., Yamamoto, H. & Ezaki, T.(1992). Three new species of the genus Peptostreptococcus isolated from humans: Peptostreptococcus vaginalis sp. nov., Peptostreptococcus lacrimalis sp. nov., and Peptostreptococcus lactolyticus sp. nov. Int J Syst Bacteriol 42, 602–605.[CrossRef] [Google Scholar]
  16. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  17. Miyagawa, E., Azuma, R. & Suto, T.(1979). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25, 41–51.[CrossRef] [Google Scholar]
  18. Moore, L. V. H., Bourne, D. M. & Moore, W. E. C.(1994). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef] [Google Scholar]
  19. Murdoch, D. A.(1998). Gram-positive anaerobic cocci. Clin Microbiol Rev 11, 81–120. [Google Scholar]
  20. Murdoch, D. A. & Shah, H. N.(1999). Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb. nov. Anaerobe 5, 555–559.[CrossRef] [Google Scholar]
  21. Murdoch, D. A., Shah, H. N., Gharbia, S. E. & Rajendram, D.(2000). Proposal to restrict the genus Peptostreptococcus (Kluyver & van Niel 1936) to Peptostreptococcus anaerobius. Anaerobe 6, 257–260.[CrossRef] [Google Scholar]
  22. Nishiyama, T., Ueki, A., Kaku, N. & Ueki, K.(2009).Clostridium sufflavum sp. nov., a novel strictly anaerobic, yellow-pigment producing, cellulolytic bacterium isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 59, 981–986.[CrossRef] [Google Scholar]
  23. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  24. Schiefer-Ullrich, H. & Andreesen, J. R.(1985).Peptostreptococcus barnesae sp. nov., a gram-positive, anaerobic, obligately purine utilizing coccus from chicken feces. Arch Microbiol 143, 26–31.[CrossRef] [Google Scholar]
  25. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  26. Song, Y., Liu, C., McTeague, M. & Finegold, S. M.(2003). 16S ribosomal DNA sequence-based analysis of clinically significant gram-positive anaerobic cocci. J Clin Microbiol 41, 1363–1369.[CrossRef] [Google Scholar]
  27. Song, Y., Liu, C. & Finegold, S. M.(2007).Peptoniphilus gorbachii sp. nov., Peptoniphilus olsenii sp. nov., and Anaerococcus murdochii sp. nov. isolated from clinical specimens of human origin. J Clin Microbiol 45, 1746–1752.[CrossRef] [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  29. Tindall, B. J. & Euzéby, J. P.(2006). Proposal of Parvimonas gen. nov. and Quatrionicoccus gen. nov. as replacements for the illegitimate, prokaryotic, generic names Micromonas Murdoch and Shah 2000 and Quadricoccus Maszenan et al. 2002, respectively. Int J Syst Evol Microbiol 56, 2711–2713.[CrossRef] [Google Scholar]
  30. Ueki, A. & Suto, T.(1979). Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25, 185–196.[CrossRef] [Google Scholar]
  31. Ueki, A., Matsuda, K. & Ohtsuki, C.(1986). Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32, 111–123.[CrossRef] [Google Scholar]
  32. Ueki, A., Akasaka, H., Suzuki, D. & Ueki, K.(2006).Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56, 39–44.[CrossRef] [Google Scholar]
  33. Ueki, A., Akasaka, H., Suzuki, D., Satoh, A. & Ueki, K.(2007).Prevotella paludivivens sp. nov., a novel strictly anaerobic, gram-negative hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int J Syst Evol Microbiol 57, 1803–1809.[CrossRef] [Google Scholar]
  34. Ueki, A., Abe, K., Kaku, N., Watanabe, K. & Ueki, K.(2008).Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 58, 346–352.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error