1887

Abstract

An oval to rod-shaped, phototrophic, purple non-sulfur bacterium, strain JA192, was isolated from an enrichment culture of a pasteurized rhizosphere soil sample from a field cultivated with jowar (sorghum) collected from Godumakunta village near Hyderabad, India. Strain JA192 is Gram-negative, motile and produces endospores. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that the strain JA192 is closely related to 2.4.1 (99.9 % sequence similarity), JA194 (99.8 %) and KA25 (98.1 %) and clusters with other species of the genus of the family . However, DNA–DNA hybridization with DSM 158, JA194 and JCM 9340 showed relatedness of only 38–57 % with respect to strain JA192. On the basis of 16S rRNA gene sequence analysis, DNA–DNA hybridization data and morphological, physiological and chemotaxonomic characters, strain JA192 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JA192 (=DSM 18678 =JCM 14543 =MTCC 8172).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011718-0
2010-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2099.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011718-0&mimeType=html&fmt=ahah

References

  1. Ajithkumar, B., Ajithkumar, V. P., Iriye, R., Doi, Y. & Sakai, T. ( 2003; ). Spore-forming Serratia marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank. Int J Syst Evol Microbiol 53, 253–258.[CrossRef]
    [Google Scholar]
  2. Anil Kumar, P., Srinivas, T. N. R., Sasikala, Ch. & Ramana, Ch. V. ( 2007; ). Rhodobacter changlensis sp. nov., a psychrotolerant, phototrophic alphaproteobacterium from the Himalayas of India. Int J Syst Evol Microbiol 57, 2568–2571.[CrossRef]
    [Google Scholar]
  3. Anil Kumar, P., Venkata Ramana, V., Srinivas, T. N. R., Sasikala, Ch. & Ramana, Ch. V. ( 2009; ). Rhodobacter aestuarii sp. nov., a phototrophic alphaproteobacterium isolated from an estuarine environment. Int J Syst Evol Microbiol 59, 1133–1136.[CrossRef]
    [Google Scholar]
  4. Arunasri, K., Sasikala, Ch., Ramana, Ch., Süling, J. & Imhoff, J. F. ( 2005; ). Marichromatium indicum sp. nov., a novel purple sulfur gammaproteobacterium from mangrove soil of Goa, India. Int J Syst Evol Microbiol 55, 673–679.[CrossRef]
    [Google Scholar]
  5. Arunasri, K., Venkata Ramana, V., Spröer, C., Sasikala, Ch. & Ramana, Ch. V. ( 2008; ). Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth. Int J Syst Evol Microbiol 58, 1792–1796.[CrossRef]
    [Google Scholar]
  6. Berleman, J. E. & Bauer, C. E. ( 2004; ). Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospirillum centenum. Microbiology 150, 383–390.[CrossRef]
    [Google Scholar]
  7. Biebl, H. & Pfennig, H. ( 1981; ). Isolation of members of the family Rhodospirillaceae. In The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria, pp. 267–273. Edited by Starr, M. P., Stolp, H., Trüper, H. G., Balows, A. & Schlegel, H. G.. Berlin. : Springer.
    [Google Scholar]
  8. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  9. Chada, V. G. R., Sanstad, E. A., Wang, R. & Driks, A. ( 2003; ). Morphogenesis of Bacillus spore surfaces. J Bacteriol 185, 6255–6261.[CrossRef]
    [Google Scholar]
  10. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  11. Eldar, A., Chary, V. K., Xenopoulos, P., Fontes, M. E., Losón, O. C., Dworkin, J., Piggot, P. J. & Elowitz, M. B. ( 2009; ). Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–515.
    [Google Scholar]
  12. Englen, M. D. & Kelley, L. C. ( 2000; ). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef]
    [Google Scholar]
  13. Erwin, P. M. & Thacker, R. W. ( 2008; ). Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17, 2937–2947.[CrossRef]
    [Google Scholar]
  14. Favinger, J., Stadtwald, R. & Gest, H. ( 1989; ). Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek 55, 291–296.[CrossRef]
    [Google Scholar]
  15. Fawley, M. W., Fawley, K. P. & Buchheim, M. A. ( 2004; ). Molecular diversity among communities of fresh water microchlorophytes. Microb Ecol 48, 489–499.[CrossRef]
    [Google Scholar]
  16. Grossman, A. D. & Losick, R. ( 1988; ). Extracellular control of spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A 85, 4369–4373.[CrossRef]
    [Google Scholar]
  17. Hiraishi, A. ( 1997; ). Transfer of the bacteriochlorophyll b-containing phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the genus Blastochloris gen. nov. Int J Syst Bacteriol 47, 217–219.[CrossRef]
    [Google Scholar]
  18. Hiraishi, A., Muramatsu, K. & Ueda, Y. ( 1996; ). Molecular genetic analysis of Rhodobacter azotoformans sp. nov. and related species of phototrophic bacteria. Syst Appl Microbiol 19, 168–177.[CrossRef]
    [Google Scholar]
  19. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  20. Imhoff, J. F. ( 2005; ). Genus Rhodobacter. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2C, pp. 161–167. Edited by Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M.. New York. : Springer.
    [Google Scholar]
  21. Imhoff, J. F., Petri, R. & Süling, J. ( 1998a; ). Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48, 793–798.[CrossRef]
    [Google Scholar]
  22. Imhoff, J. F., Süling, J. & Petri, R. ( 1998b; ). Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48, 1129–1143.[CrossRef]
    [Google Scholar]
  23. Janssen, F. W., Lund, A. J. & Anderson, L. F. ( 1958; ). Colorimetric assay for dipicolinic acid in bacterial spores. Science 127, 26–27.[CrossRef]
    [Google Scholar]
  24. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt, E. & Goodfellow, M.. Chichester. : Wiley.
    [Google Scholar]
  25. Madigan, M. T. ( 1992; ). The Heliobacteriaceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 2nd edn, pp. 1981–1992. Edited by Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.. Berlin. : Springer.
    [Google Scholar]
  26. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  27. McCaul, T. F. & Williams, J. C. ( 1981; ). Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147, 1063–1076.
    [Google Scholar]
  28. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  29. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  30. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  31. Ramana, Ch. V., Sasikala, Ch., Arunasri, K., Anil Kumar, P., Srinivas, T. N. R., Shivaji, S., Gupta, P., Suling, J. & Imhoff, J. F. ( 2006; ). Rubrivivax benzoatilyticus sp. nov., an aromatic hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 56, 2157–2164.[CrossRef]
    [Google Scholar]
  32. Reed, W. M. & Dugan, P. R. ( 1979; ). Study of developmental stages of Methylosinus trichosporium with the aid of fluorescent-antibody staining techniques. Appl Environ Microbiol 38, 1179–1183.
    [Google Scholar]
  33. Reed, W. M., Titus, J. A., Dugan, P. R. & Pfister, R. M. ( 1980; ). Structure of Methylosinus trichosporium exospore. J Bacteriol 141, 908–913.
    [Google Scholar]
  34. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  35. Schaeffer, A. B. & Fulton, M. D. ( 1933; ). A simplified method of staining endospores. Science 77, 194.[CrossRef]
    [Google Scholar]
  36. Schichnes, D., Nemson, J. A. & Ruzin, S. E. ( 2006; ). Fluorescent staining method for bacterial endospores. Microscope 54, 91–93.
    [Google Scholar]
  37. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore. : Williams & Wilkins.
    [Google Scholar]
  38. Srinivas, T. N. R., Anil Kumar, P., Sasikala, Ch., Ramana, Ch. V. & Imhoff, J. F. ( 2007; ). Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter. Int J Syst Evol Microbiol 57, 1984–1987.[CrossRef]
    [Google Scholar]
  39. Srinivas, T. N. R., Anil Kumar, P., Sasikala, Ch., Spröer, C. & Ramana, Ch. V. ( 2008; ). Rhodobacter ovatus sp. nov., an alphaproteobacterium isolated from industrially polluted freshwater pond. Int J Syst Evol Microbiol 58, 1379–1383.[CrossRef]
    [Google Scholar]
  40. Takaichi, S. ( 1999; ). Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In The Photochemistry of Carotenoids, pp. 39–69. Edited by Frank, H. A, Young, A. J., Britton, G. & Cogdell, R. J.. Dordrecht. : Kluwer.
    [Google Scholar]
  41. Takaichi, S. & Shimada, K. ( 1992; ). Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213, 375–385.
    [Google Scholar]
  42. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  43. Tatusova, T. A. & Madden, T. L. ( 1999; ). blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247–250.[CrossRef]
    [Google Scholar]
  44. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  45. Trüper, H. G. & Pfennig, N. ( 1981; ). Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria, pp. 279–289. Edited by Starr, M. P., Stolp, H., Trüper, H. G., Balows, A. & Schlegel, H. G.. Berlin. : Springer.
    [Google Scholar]
  46. Venkata Ramana, V., Sasikala, Ch. & Ramana, Ch. V. ( 2008; ). Rhodobacter maris sp. nov., a phototrophic alphaproteobacterium isolated from a marine habitat of India. Int J Syst Evol Microbiol 58, 1719–1722.[CrossRef]
    [Google Scholar]
  47. Zhang, D., Yang, H., Zhang, W., Huang, Z. & Liu, S.-J. ( 2003; ). Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 53, 1111–1114.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011718-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011718-0
Loading

Data & Media loading...

Supplements

(a) Scanning electron photomicrograph of strain JA192 showing a spore (S) and a vegetative cell (V). (b) Scanning electron photomicrograph of strain JA192 showing a mature spore (MS) and a germinating cell (GC).

IMAGE

Transmission electron photomicrograph of a cell of strain JA192 showing polar flagella. Bar, 0.9 µm.

IMAGE

(a) FTIR fingerprinting analysis of sporulating (blue curve) and unsporulated (black curve) cultures of strain JA192 . The arrow indicates the absence of an ester peak in the sporulating culture. (b) HPLC chromatogram confirming the presence of calcium dipicolinate in strain JA192 .

IMAGE

Trichloromethane-treated sporulated culture stained with acridine orange. (a) Fluorescence image of lysed cells of strain JA192 . Bar, 3 µm. (b) Overlay of fluorescence and transmission image of strain JA192 showing intact spores. Bar, 3 µm.

IMAGE

Whole-cell absorption spectrum of strain JA192 .

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error