1887

Abstract

Six Gram-stain-negative, spiral-shaped, microaerobic isolates were obtained during a sampling from wild birds in the sub-Antarctic region. Based on initial observations, these isolates were classified as -like. The isolates were further characterized by whole-cell protein and amplified fragment length polymorphism (AFLP) analysis, which revealed that they were distinct from and all other known species of the genus . Here, we present comprehensive phylogenetic, genomic and phenotypic evidence that these isolates represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is R-3023 (=LMG 24377 =CCUG 38513).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011056-0
2010-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011056-0&mimeType=html&fmt=ahah

References

  1. Debruyne, L., On, S. W. L., De Brandt, E. & Vandamme, P. ( 2009; ). Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov., and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol 59, 1126–1132.[CrossRef]
    [Google Scholar]
  2. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  3. Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W. ( 2007; ). Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol 57, 2636–2644.[CrossRef]
    [Google Scholar]
  4. Kärenlampi, R. I., Tolvanen, T. P. & Hanninen, M. L. ( 2004; ). Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol 42, 5731–5738.[CrossRef]
    [Google Scholar]
  5. Lawson, A. J., On, S. L. W., Logan, J. M. J. & Stanley, J. ( 2001; ). Campylobacter hominis sp. nov., from the human intestinal tract. Int J Syst Evol Microbiol 51, 651–660.
    [Google Scholar]
  6. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  7. On, S. L. W. & Holmes, B. ( 1991a; ). Reproducibility of tolerance tests that are useful in the identification of campylobacteria. J Clin Microbiol 29, 1785–1788.
    [Google Scholar]
  8. On, S. L. W. & Holmes, B. ( 1991b; ). Effect of inoculum size on the phenotypic characterization of Campylobacter species. J Clin Microbiol 29, 923–926.
    [Google Scholar]
  9. On, S. L. W. & Holmes, B. ( 1992; ). Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol 30, 746–749.
    [Google Scholar]
  10. On, S. L. W., Holmes, B. & Sackin, M. J. ( 1996; ). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81, 425–432.
    [Google Scholar]
  11. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  12. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics, pp. 493–521. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  13. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  14. Sebald, M. & Veron, M. ( 1963; ). Base DNA content and classification of vibrios. Ann Inst Pasteur (Paris) 105, 897–910.
    [Google Scholar]
  15. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  16. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  17. Vandamme, P., Pot, B., Falsen, E., Kersters, K. & De Ley, J. ( 1990; ). Intra- and interspecific relationships of veterinary campylobacters revealed by numerical analysis of electrophoretic protein profiles and DNA:DNA hybridizations. Syst Appl Microbiol 13, 295–303.[CrossRef]
    [Google Scholar]
  18. Vandamme, P., Holmes, B., Bercovier, H. & Coenye, T. ( 2006; ). Classification of Centers for Disease Control group eugonic fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 56, 1801–1805.[CrossRef]
    [Google Scholar]
  19. Waldenström, J., Broman, T., Carlsson, I., Hasselquist, D., Achterberg, R. P., Wagenaar, J. A. & Olsen, B. ( 2002; ). Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol 68, 5911–5917.[CrossRef]
    [Google Scholar]
  20. Waldenström, J., On, S. L., Ottvall, R., Hasselquist, D. & Olsen, B. ( 2007; ). Species diversity of campylobacteria in a wild bird community in Sweden. J Appl Microbiol 102, 424–432.
    [Google Scholar]
  21. Zanoni, R. G., Debruyne, L., Rossi, M., Revez, J. & Vandamme, P. ( 2009; ). Campylobacter cuniculorum sp. nov., from rabbits. Int J Syst Evol Microbiol 59, 1666–1671.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011056-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011056-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 815 - 819

UPGMA dendrogram of partial whole-cell protein SDS-PAGE profiles. The molecular mass markers used were β-galactosidase (116 kDa), bovine albumin (66 kDa), egg albumin (45 kDa), glyceraldehyde-3-phosphate dehydrogenase (36 kDa), carbonic anhydrase (29 kDa), trypsinogen (24 kDa), trypsin inhibitor (20.1 kDa) and lysozyme (14.2 kDa).



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error