1887

Abstract

A yellow-pigmented, hexachlorocyclohexane (HCH)-degrading bacterial strain, P25, was isolated from an HCH dump site located in the northern part of India. Phylogenetic analysis based on the 16S rRNA gene sequence showed that the strain belongs to the genus , as it showed highest sequence similarity to IAM 15006 (97.7 %). The 16S rRNA gene sequence similarity between strain P25 and members of other species of the genus with validly published names ranged from 94.0 to 97.7 %. The DNA–DNA relatedness between strain P25 and IAM 15006 and other related strains was found be less than 30 %, confirming it to represent a novel species. The DNA G+C content of strain P25 was 65 mol%. The polyamine profile showed the presence of spermidine. The predominant cellular fatty acids were summed feature 8 (18 : 17 and/or 18 : 16; 48.3 %), 16 : 0 (13.7 %) and 14 : 0 2-OH (8.8 %). The polar lipid profile of strain P25 also corresponded to those reported for sphingomonads (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid), supporting its identification as a member of the family . The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished strain P25 from closely related members of the genus . Thus, a novel species of the genus is proposed, sp. nov. The type strain is P25 (=MTCC 9472 =CCM 7543).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010868-0
2010-02-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/429.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010868-0&mimeType=html&fmt=ahah

References

  1. Arden-Jones, M. P., McCarthy, A. J. & Cross, T. ( 1979; ). Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115, 343–354.[CrossRef]
    [Google Scholar]
  2. Bala, S., Khanna, R., Dadwhal, M. & Lal, R. ( 2004; ). Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 54, 1145–1149.[CrossRef]
    [Google Scholar]
  3. Böltner, D., Moreno-Morales, S. & Ramos, J. L. ( 2005; ). 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7, 1329–1338.[CrossRef]
    [Google Scholar]
  4. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  5. Busse, H.-J., Kämpfer, P. & Denner, E. B. M. ( 1999; ). Chemotaxonomic characterization of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef]
    [Google Scholar]
  6. Christensen, W. B. ( 1946; ). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52, 461–466.
    [Google Scholar]
  7. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  8. Dadhwal, M., Singh, A., Prakash, O., Gupta, S. K., Kumari, K., Sharma, P., Jit, S., Verma, M., Holliger, C. & Lal, R. ( 2009; ). Proposal of biostimulation for hexachlorocyclohexane (HCH) decontamination and characterization of culturable bacterial community from high dose point HCH contaminated sites. J Appl Microbiol 106, 381–392.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Gonzalez, J. M. & Saiz-Jimenez, C. ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4, 770–773.[CrossRef]
    [Google Scholar]
  12. Gordon, R. E., Barnett, D. A., Handerhan, J. E. & Pang, C. H.-N. ( 1974; ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24, 54–63.[CrossRef]
    [Google Scholar]
  13. Gupta, S. K., Lal, D. & Lal, R. ( 2009; ). Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 59, 156–161.[CrossRef]
    [Google Scholar]
  14. Jit, S., Dadhwal, M., Prakash, O. & Lal, R. ( 2008; ). Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 58, 1665–1669.[CrossRef]
    [Google Scholar]
  15. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  16. Kumar, M., Verma, M. & Lal, R. ( 2008; ). Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58, 861–865.[CrossRef]
    [Google Scholar]
  17. Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., Lal, S., van der Meer, J. R., Holliger, C. & Lal, R. ( 2002; ). Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68, 6021–6028.[CrossRef]
    [Google Scholar]
  18. Maruyama, T., Park, H.-D., Ozawa, K., Tanaka, Y., Sumino, T., Hamana, K., Hiraishi, A. & Kato, K. ( 2006; ). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56, 85–89.[CrossRef]
    [Google Scholar]
  19. McCarthy, A. J. & Cross, T. ( 1984; ). A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130, 5–25.
    [Google Scholar]
  20. Prakash, O. & Lal, R. ( 2006; ). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56, 2147–2152.[CrossRef]
    [Google Scholar]
  21. Prakash, O., Kumari, K. & Lal, R. ( 2007; ). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57, 527–531.[CrossRef]
    [Google Scholar]
  22. Raina, V., Saur, M., Singh, A., Prakash, O., Dadhwal, M., Gupta, S. K., Dogra, C. & Lal, R. ( 2008; ). Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 19, 27–40.[CrossRef]
    [Google Scholar]
  23. Sharma, P., Raina, V., Kumari, R., Malhotra, S., Dogra, C., Kumari, H., Kohler, H. P. E., Buser, H. R., Holliger, C. & Lal, R. ( 2006; ). Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72, 5720–5727.[CrossRef]
    [Google Scholar]
  24. Singh, A. & Lal, R. ( 2009; ). Sphingobium ummariense sp. nov. a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59, 162–166.[CrossRef]
    [Google Scholar]
  25. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analysis. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  27. Tourova, T. P. & Antonov, A. S. ( 1987; ). Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19, 333–355.
    [Google Scholar]
  28. Vanbroekhoven, K., Ryngaert, A., Bastiaens, L., Wattiau, P., Vancanneyt, M., Swings, J., De Mot, R. & Springael, D. ( 2004; ). Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6, 1123–1136.[CrossRef]
    [Google Scholar]
  29. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  30. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34, 99–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010868-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010868-0
Loading

Data & Media loading...

Supplements

Degradation of α-, β-, γ- and δ-HCH (5 µg ml ) by strain P25 using the resting cell assay. [PDF](77 KB)

PDF

Two-dimensional TLC of polar lipids of strain P25 . DPG, Diphosphatidylglycerol; PC, phosphatidylcholine; PDE, phosphatidyiimethylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; SGL, sphingoglycolipid.

IMAGE

Electron micrograph of a negatively stained cell of strain P25 . Bar, 1 µm.

IMAGE

[PDF file of Supplementary Tables](59 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error