1887

Abstract

A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82, was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5–7×1.3 μm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 °C (growth range 20–40 °C), pH 7.3 (growth range pH 5.5–8.5) and 2 % (w/v) NaCl (growth range 0.1–7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% ( ).16S rRNA gene sequence analysis indicated that strain USBA 82 was affiliated to within the phylum with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus , we suggest that strain USBA 82 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is USBA 82 (=DSM 21565=KCTC 5659).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010835-0
2010-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/850.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010835-0&mimeType=html&fmt=ahah

References

  1. Alfaro C. 2002; Geoquímica del Sistema Geotérmico de Paipa . Documento interno ministerio de Minas y Energía – INGEOMINASp–40 Bogotá, Colombia: Proyecto Exploración y Evaluación de los Recursos Geotérmicos (in Spanish
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [CrossRef]
    [Google Scholar]
  4. Baena S., Fardeau M.-L., Labat M., Ollivier B., Garcia J.-L., Patel B. K. C. 1998; Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 4:241–250 [CrossRef]
    [Google Scholar]
  5. Baena S., Fardeau M.-L., Woo T. H. S., Ollivier B., Labat M., Patel B. K. C. 1999a; Phylogenetic relationships of three amino-acid utilizing anaerobes, Selenomonas acidaminovorans , ‘ Selenomonas acidaminophila ’ and Eubacterium acidaminophilum , as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen.nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49:969–974
    [Google Scholar]
  6. Baena S., Fardeau M.-L., Ollivier B., Labat M., Thomas P., Garcia J.-L., Patel B. K. C. 1999b; Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982 [CrossRef]
    [Google Scholar]
  7. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  8. Cord-Ruwisch R. 1985; A quick method for determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  9. Dahle H., Birkeland N. K. 2006; Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545 [CrossRef]
    [Google Scholar]
  10. Díaz C., Baena S., Fardeau M. L., Patel B. K. C. 2007; Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol 57:1914–1918 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  12. Ganesan A., Chaussonnerie S., Tarrade A., Dauga C., Bouchez T., Pelletier E., Le Paslier D., Sghir A. 2008; Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘ Synergistetes ’, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 58:2003–2012
    [Google Scholar]
  13. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Imhoff-Stuckle D., Pfenning N. 1983; Isolation and characterization of a nicotinic-acid degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136:194–198 [CrossRef]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Jumas-Bilak E., Carlier J.-P., Jean-Pierre H., Citron D., Bernard K., Damay A., Gay B., Teyssier C., Campos J., Marchandin H. 2007; Jonquetella anthropi gen. nov., sp. nov. the first member of the candidate phylum ‘ Synergistetes ’ isolated from man. Int J Syst Evol Microbiol 57:2743–2748 [CrossRef]
    [Google Scholar]
  17. Jumas-Bilak E., Roudière L., Marchandin H. 2009; Description of Synergistetes phyl. nov. and emended description of the phylum Deferribacteres and of the family Syntrophomonadaceae , phylum Firmicutes . Int J Syst Evol Microbiol 59:1028–1035 [CrossRef]
    [Google Scholar]
  18. Magot M., Ravot G., Campaignolle X., Ollivier B., Patel B. K., Fardeau M. L., Thomas P., Crolet J. L., Garcia J. L. 1997; Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824 [CrossRef]
    [Google Scholar]
  19. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  20. Ogg C. D., Patel B. K. C. 2009; Caloramator australicus sp. nov., a thermophilic anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:95–101 [CrossRef]
    [Google Scholar]
  21. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69
    [Google Scholar]
  22. Rees G. N., Patel B. K. C., Grassia G. S., Sheehy A. J. 1997; Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  25. Vartoukian S. R., Palmer R. M., Wade W. G. 2007; The division “ Synergistes ”. Anaerobe 13:99–106 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010835-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010835-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error