1887

Abstract

A thermophilic bacterium, designated strain CR11, was isolated from a filamentous sample collected from a terrestrial hot spring on the south-western foothills of the Rincón volcano in Costa Rica. The Gram-negative cells are approximately 2.4–3.9 μm long and 0.5–0.6 μm wide and are motile rods with polar flagella. Strain CR11 grows between 65 and 85 °C (optimum 75 °C, doubling time 4.5 h) and between pH 4.8 and 7.8 (optimum pH 5.9–6.5). The isolate grows chemolithotrophically with S, or H as the electron donor and with O (up to 16 %, v/v) as the sole electron acceptor. The isolate can grow on mannose, glucose, maltose, succinate, peptone, Casamino acids, starch, citrate and yeast extract in the presence of oxygen (4 %) and S. Growth occurs only at NaCl concentrations below 0.4 % (w/v). The G+C content of strain CR11 is 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence places the strain as a close relative of OC 1/4 (95.7 % sequence similarity). Based on phylogenetic and physiological characteristics, we propose the name sp. nov., with CR11 (=DSM 19557 =ATCC BAA-1533) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010496-0
2010-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/338.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010496-0&mimeType=html&fmt=ahah

References

  1. Aguiar P., Beveridge T. J., Reysenbach A. L. 2004; Sulfurihydrogenibium azorense sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39 [CrossRef]
    [Google Scholar]
  2. Barion S., Franchi M., Gallori E., Di Giulio M. 2007; The first lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales , and not the mesophilic Planctomycetales . Biosystems 87:13–19 [CrossRef]
    [Google Scholar]
  3. Beveridge T. J., Popkin T. J., Cole R. C. 1994; Electron microscopy. In Methods for General and Molecular Bacteriology pp 42–71 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Blank C. E., Cady S. L., Pace N. R. 2002; Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135 [CrossRef]
    [Google Scholar]
  5. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus . Syst Appl Microbiol 15:352–356 [CrossRef]
    [Google Scholar]
  6. Connon S. A., Koski A. K., Neal A. L., Wood S. A., Magnuson T. S. 2008; Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert. FEMS Microbiol Ecol 64:117–128 [CrossRef]
    [Google Scholar]
  7. Di Giulio M. 2003a; The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436 [CrossRef]
    [Google Scholar]
  8. Di Giulio M. 2003b; The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224:277–283 [CrossRef]
    [Google Scholar]
  9. Di Giulio M. 2003c; The universal ancestor and the ancestor of the Bacteria were hyperthermophiles. J Mol Evol 57:721–730 [CrossRef]
    [Google Scholar]
  10. Eder W., Huber R. 2002; New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318 [CrossRef]
    [Google Scholar]
  11. Ferrera I., Longhorn S., Banta A. B., Liu Y., Preston D., Reysenbach A. L. 2007; Diversity of 16S rRNA gene, ITS region and aclB gene of the Aquificales . Extremophiles 11:57–64 [CrossRef]
    [Google Scholar]
  12. Flores G. E., Liu Y., Ferrera I., Beveridge T. J., Reysenbach A.-L. 2008; Sulfurihydrogenibium kristjanssonii sp. nov., a hydrogen- and sulfur-oxidizing thermophile isolated from a terrestrial Icelandic hot spring. Int J Syst Evol Microbiol 58:1153–1158 [CrossRef]
    [Google Scholar]
  13. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  14. Hall J. R., Mitchell K. R., Jackson-Weaver O., Kooser A. S., Cron B. R., Crossey L. J., Takacs-Vesbach C. D. 2008; Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922 [CrossRef]
    [Google Scholar]
  15. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., König H., Rachel R., Rockinger I., Fricke H., Stetter K. O. 1992; Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  16. Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K. O. 1998 Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 643576–3583
  17. Jahnke L. L., Eder W., Huber R., Hope J. M., Hinrichs K. U., Hayes J. M., Des Marais D. J., Cady S. L., Summons R. E. 2001; Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189 [CrossRef]
    [Google Scholar]
  18. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., sp. nov. an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10 [CrossRef]
    [Google Scholar]
  19. Kristjansson J. K., Ingason A., Alfredsson G. A. 1985; Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus , from Icelandic hot springs. Arch Microbiol 140:321–325 [CrossRef]
    [Google Scholar]
  20. Kryukov V. R., Savelyeva N. D., Pusheva M. A. 1983; Calderobacterium hydrogenophilum nov. gen., nov. sp., an extremely thermophilic hydrogen bacterium, and its hydrogenase activity. Mikrobiologiia 52:781–788 (in Russian
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  23. Nakagawa S., Shtaih Z., Banta A., Beveridge T. J., Sako Y., Reysenbach A.-L. 2005; Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium , Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense . Int J Syst Evol Microbiol 55:2263–2268 [CrossRef]
    [Google Scholar]
  24. Nishihara H., Igarashi Y., Kodama T. 1990; A new isolate of Hydrogenobacter , an obligately chemolithotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring. Arch Microbiol 153:294–298 [CrossRef]
    [Google Scholar]
  25. Pitulle C., Yang Y., Marchiani M., Moore E. R. B., Siefert J. L., Aragno M., Jurtshuk P. Jr, Fox G. E. 1994; Phylogenetic position of the genus Hydrogenobacter . Int J Syst Bacteriol 44:620–626 [CrossRef]
    [Google Scholar]
  26. Reysenbach A. L., Whickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring. Yellowstone National Park. Appl Environ Microbiol 60:2113–2119
    [Google Scholar]
  27. Shima S., Suzuki K. 1993; Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43:703–708 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Swofford D. L. 2003 paup*. Phylogenetic analysis using parsimony (and other methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010496-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010496-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error