Salt cedar trees with pronounced witches'-broom symptoms were observed in their natural habitat in China. 16S rRNA gene sequences unique to phytoplasmas were detected in every DNA sample extracted from stem and leaf tissues of the symptomatic trees, revealing a direct association between phytoplasma infection and the salt cedar witches'-broom (SCWB) disease. Phylogenetic analysis of the SCWB phytoplasma 16S rRNA gene sequence indicated that the SCWB phytoplasma belonged to a subclade consisting of several mutually distinct ‘ Phytoplasma’ taxa including ‘ Phytoplasma prunorum’, ‘ Phytoplasma mali’, ‘ Phytoplasma pyri’ and ‘ Phytoplasma spartii’. Pairwise sequence similarity scores calculated from an alignment of near full-length 16S rRNA genes revealed that SCWB phytoplasma shared 96.6 % or less sequence similarity with each previously described or proposed ‘ Phytoplasma’ taxon, justifying the recognition of SCWB phytoplasma as a novel taxon, ‘ Phytoplasma tamaricis’. The distinct virtual RFLP pattern derived from the SCWB phytoplasma 16S rRNA gene sequence, together with its lower-than-threshold similarity coefficient values with RFLP patterns of any of the 29 previously established groups, supported the recognition of a new 16Sr group, designated 16SrXXX, salt cedar witches'-broom phytoplasma group.


Article metrics loading...

Loading full text...

Full text loading...



  1. Al-Saady, N. A., Khan, A. J., Calari, A., Al-Subhi, A. M. & Bertaccini, A.(2008).Candidatus Phytoplasma omanense’, associated with witches'-broom of Cassia italica (Mill.) Spreng. in Oman. Int J Syst Evol Microbiol 58, 461–466.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  3. Arocha, Y., López, M., Piñol, B., Fernández, M., Picornell, B., Almeida, R., Palenzuela, I., Wilson, M. R. & Jones, P.(2005).Candidatus Phytoplasma graminis’ and ‘Candidatus Phytoplasma caricae’, two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. Int J Syst Evol Microbiol 55, 2451–2463.[CrossRef] [Google Scholar]
  4. Arocha, Y., Antesana, O., Montellano, E., Franco, P., Plata, G. & Jones, P.(2007).Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. Int J Syst Evol Microbiol 57, 1704–1710.[CrossRef] [Google Scholar]
  5. Bai, X. D., Zhang, J. H., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A. & other authors(2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188, 3682–3696.[CrossRef] [Google Scholar]
  6. Baum, B. R.(1967). Introduced and naturalized tamarisks in the United States and Canada. Baileya 15, 19–25. [Google Scholar]
  7. Bertamini, M., Grando, M. S., Muthuchelian, K. & Nedunchezhian, N.(2002a). Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Pathol 61, 349–356.[CrossRef] [Google Scholar]
  8. Bertamini, M., Nedunchezhian, N., Tomasi, F. & Grando, M. S.(2002b). Phytoplasma [Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant Pathol 61, 357–366.[CrossRef] [Google Scholar]
  9. Cai, H., Chen, H. R., Li, F. & Kong, B. H.(2002). First report of a phytoplasma associated with cactus witches'-broom in Yunnan (China). Plant Pathol 51, 394[CrossRef] [Google Scholar]
  10. Cai, H., Wei, W., Davis, R. E., Chen, H. & Zhao, Y.(2008). Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches'-broom phytoplasma group. Int J Syst Evol Microbiol 58, 1448–1457.[CrossRef] [Google Scholar]
  11. Chang, C.-J.(1998). Pathogenicity of aster yellows phytoplasma and Spiroplasma citri on periwinkle. Phytopathology 88, 1347–1350.[CrossRef] [Google Scholar]
  12. Cheng, L. & Zhou, G.(2001). Tissue culture and rapid propagation of Tamarix chinensis Lour. J Shanghai Teachers Univ (Natural Sciences) 30, 56–60. [Google Scholar]
  13. Curković-Perica, M., Lepedus, H. & Seruga-Musić, M.(2007). Effect of indole-3-butyric acid on phytoplasmas in infected Catharanthus roseus shoots grown in vitro. FEMS Microbiol Lett 268, 171–177.[CrossRef] [Google Scholar]
  14. Davis, R. E. & Dally, E. L.(2001). Revised subgroup classification of group 16SrV phytoplasmas and placement of flavescence dorée-associated phytoplasmas in two distinct subgroups. Plant Dis 85, 790–797.[CrossRef] [Google Scholar]
  15. Davis, R. E., Dally, E. L., Gundersen, D. E., Lee, I. M. & Habili, N.(1997).Candidatus phytoplasma australiense’, a new phytoplasma taxon associated with Australian grapevine yellows. Int J Syst Bacteriol 47, 262–269.[CrossRef] [Google Scholar]
  16. Davis, R. E., Jomantiene, R. & Zhao, Y.(2005). Lineage-specific decay of folate biosynthesis genes suggests ongoing host adaptation in phytoplasmas. DNA Cell Biol 24, 832–840.[CrossRef] [Google Scholar]
  17. Deng, S. & Hiruki, C.(1991). Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. J Microbiol Methods 14, 53–61.[CrossRef] [Google Scholar]
  18. Firrao, G., Gibb, K. & Streten, C.(2005). Short taxonomic guide to the genus ‘Candidatus phytoplasma’. J Plant Pathol 87, 249–263. [Google Scholar]
  19. Gaskin, J. F.(2003). Molecular systematics and the control of invasive plants: a case study of Tamarix (Tamaricaceae). Ann Mo Bot Gard 90, 109–118.[CrossRef] [Google Scholar]
  20. Green, M. J., Thompson, D. A. & MacKenzie, D. J.(1999). Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. Plant Dis 83, 482–485.[CrossRef] [Google Scholar]
  21. Griffiths, H. M., Sinclair, W. A., Smart, C. D. & Davis, R. E.(1999). The phytoplasma associated with ash yellows and lilac witches'-broom: ‘Candidatus phytoplasma fraxini’. Int J Syst Bacteriol 49, 1605–1614.[CrossRef] [Google Scholar]
  22. Gundersen, D. E., Lee, I.-M., Rehner, S. A., Davis, R. E. & Kingsbury, D. T.(1994). Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176, 5244–5254. [Google Scholar]
  23. Harrison, N. A., Narváez, M., Almeyda, H., Cordova, I., Carpio, M. L. & Oropeza, C.(2002a). First report of group 16SrIV phytoplasmas infecting coconut palms with leaf yellowing symptoms on the Pacific coast of Mexico. Plant Pathol 51, 808[CrossRef] [Google Scholar]
  24. Harrison, N. A., Womack, M. & Carpio, M. L.(2002b). Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas. Plant Dis 86, 676–681.[CrossRef] [Google Scholar]
  25. Hiruki, C. & Wang, K.(2004). Clover proliferation phytoplasma: ‘Candidatus Phytoplasma trifolii’. Int J Syst Evol Microbiol 54, 1349–1353.[CrossRef] [Google Scholar]
  26. Hogenhout, S.A., Oshima, K., Ammar, el-D., Kakizawa, S., Kingdom, H. N. & Namba, S.(2008). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403–423.[CrossRef] [Google Scholar]
  27. IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma Taxonomy Group(2004).Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54, 1243–1255.[CrossRef] [Google Scholar]
  28. Jung, H. Y., Sawayanagi, T., Kakizawa, S., Nishigawa, H., Miyata, S., Oshima, K., Ugaki, M., Lee, J. T., Hibi, T. & Namba, S.(2002).Candidatus Phytoplasma castaneae’, a novel phytoplasma taxon associated with chestnut witches' broom disease. Int J Syst Evol Microbiol 52, 1543–1549.[CrossRef] [Google Scholar]
  29. Jung, H. Y., Sawayanagi, T., Kakizawa, S., Nishigawa, H., Wei, W., Oshima, K., Miyata, S., Ugaki, M., Hibi, T. & Namba, S.(2003a).Candidatus phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches'-broom disease. Int J Syst Evol Microbiol 53, 1037–1041.[CrossRef] [Google Scholar]
  30. Jung, H. Y., Sawayanagi, T., Wongkaew, P., Kakizawa, S., Nishigawa, H., Wei, W., Oshima, K., Miyata, S., Ugaki, M. & other authors(2003b).Candidatus Phytoplasma oryzae’, a novel phytoplasma taxon associated with rice yellow dwarf disease. Int J Syst Evol Microbiol 53, 1925–1929.[CrossRef] [Google Scholar]
  31. Knight, J.(2001). Alien versus predator. Nature 412, 115–116.[CrossRef] [Google Scholar]
  32. Kuai, Y., Zhang, Z. & Chen, H.(2000). Phytoplasmal diseases in China. J Yunnan Agric Univ 15, 153–160. [Google Scholar]
  33. Lee, I.-M., Hammond, R. W., Davis, R. E. & Gundersen, D. E.(1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83, 834–842.[CrossRef] [Google Scholar]
  34. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E. & Bartoszyk, I.-M.(1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48, 1153–1169.[CrossRef] [Google Scholar]
  35. Lee, I.-M., Davis, R. E. & Gundersen-Rindal, D. E.(2000). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54, 221–255.[CrossRef] [Google Scholar]
  36. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Bottner, K. D., Marcone, C. & Seemüller, E.(2004a).Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54, 1037–1048.[CrossRef] [Google Scholar]
  37. Lee, I. M., Martini, M., Marcone, C. & Zhu, S. F.(2004b). Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54, 337–347.[CrossRef] [Google Scholar]
  38. Lee, I.-M., Bottner, K. D., Secor, G. & Rivera-Varas, V.(2006).Candidatus phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int J Syst Evol Microbiol 56, 1593–1597.[CrossRef] [Google Scholar]
  39. Lepka, P., Stitt, M., Moll, E. & Seemüller, E.(1999). Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55, 59–68.[CrossRef] [Google Scholar]
  40. Marcone, C., Neimark, H., Ragozzino, A., Lauer, U. & Seemüller, E.(1999). Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89, 805–810.[CrossRef] [Google Scholar]
  41. Marcone, C., Gibb, K. S., Streten, C. & Schneider, B.(2004a).Candidatus Phytoplasma spartii’, ‘Candidatus Phytoplasma rhamni’ and ‘Candidatus Phytoplasma allocasuarinae’, respectively associated with spartium witches'-broom, buckthorn witches'-broom and allocasuarina yellows diseases. Int J Syst Evol Microbiol 54, 1025–1029.[CrossRef] [Google Scholar]
  42. Marcone, C., Schneider, B. & Seemüller, E.(2004b).Candidatus Phytoplasma cynodontis’, the phytoplasma associated with Bermuda grass white leaf disease. Int J Syst Evol Microbiol 54, 1077–1082.[CrossRef] [Google Scholar]
  43. McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T.-A., Chiykowski, L. N., Cousin, M. T., Dale, J. L., DeLeeuw, G. T. N., Golino, D. A. & other authors(1989). Plant diseases associated with mycoplasma-like organisms. In The Mycoplasmas, vol. V, pp. 545–640. Edited by R. F. Whitcomb & J. G. Tully. New York: Academic Press.
  44. Montano, H. G., Davis, R. E., Dally, E. L., Hogenhout, S., Pimentel, J. P. & Brioso, P. S.(2001).Candidatus Phytoplasma brasiliense’, a new phytoplasma taxon associated with hibiscus witches'-broom disease. Int J Syst Evol Microbiol 51, 1109–1118.[CrossRef] [Google Scholar]
  45. Sawayanagi, T., Horikoshi, N., Kanehira, T., Shinohara, M., Bertaccini, A., Cousin, M. T., Hiruki, C. & Namba, S.(1999).Candidatus phytoplasma japonicum’, a new phytoplasma taxon associated with Japanese Hydrangea phyllody. Int J Syst Bacteriol 49, 1275–1285.[CrossRef] [Google Scholar]
  46. Schneider, B., Torres, E., Martín, M. P., Schröder, M., Behnke, H. D. & Seemüller, E.(2005).Candidatus Phytoplasma pini’, a novel taxon from Pinus silvestris and Pinus halepensis. Int J Syst Evol Microbiol 55, 303–307.[CrossRef] [Google Scholar]
  47. Sears, B. B. & Kirkpatrick, B. C.(1994). Unveiling the evolutionary relationships of plant-pathogenic mycoplasmalike organisms. ASM News 60, 307–312. [Google Scholar]
  48. Seemüller, E. & Schneider, B.(2004).Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54, 1217–1226.[CrossRef] [Google Scholar]
  49. Seemüller, E., Garnier, M. & Schneider, B.(2002). Mycoplasmas of plants and insects. In Molecular Biology and Pathogenicity of Mycoplasmas, pp. 91–115. Edited by S. Razin & R. Herrmann. New York: Kluwer Academic/Plenum.
  50. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  51. Valiunas, D., Staniulis, J. & Davis, R. E.(2006).Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria×ananassa. Int J Syst Evol Microbiol 56, 277–281.[CrossRef] [Google Scholar]
  52. Verdin, E., Salar, P., Danet, J. L., Choueiri, E., Jreijiri, F., El Zammar, S., Gélie, B., Bové, J. M. & Garnier, M.(2003).Candidatus phytoplasma phoenicium’ sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int J Syst Evol Microbiol 53, 833–838.[CrossRef] [Google Scholar]
  53. Wei, W., Davis, R. E., Lee, I.-M. & Zhao, Y.(2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57, 1855–1867.[CrossRef] [Google Scholar]
  54. Wei, W., Davis, R. E., Jomantiene, R. & Zhao, Y.(2008a). Ancient, recurrent phage attacks and recombination events shaped dynamic sequence-variable mosaic structures at the root of phytoplasma genome evolution. Proc Natl Acad Sci U S A 105, 11827–11832.[CrossRef] [Google Scholar]
  55. Wei, W., Lee, I.-M., Davis, R. E., Suo, X. & Zhao, Y.(2008b). Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58, 2368–2377.[CrossRef] [Google Scholar]
  56. Weisburg, W. G., Tully, J. G., Rose, D. L., Petzel, J. P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T. G. & other authors(1989). A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171, 6455–6467. [Google Scholar]
  57. White, D. T., Blackall, L. L., Scott, P. T. & Walsh, K. B.(1998). Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. Int J Syst Bacteriol 48, 941–951.[CrossRef] [Google Scholar]
  58. Zhao, Y., Davis, R. E. & Lee, I. M.(2005a). Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. Int J Syst Evol Microbiol 55, 2131–2141.[CrossRef] [Google Scholar]
  59. Zhao, Y., Sun, Q., Davis, R. E. & Liu, Q.(2005b). New witches'-broom diseases in northern China and their association with diverse phytoplasmas. Phytopathology 95, S117–S118. [Google Scholar]
  60. Zreik, L., Carle, P., Bové, J. M. & Garnier, M.(1995). Characterization of the mycoplasmalike organism associated with witches'-broom disease of lime and proposition of a Candidatus taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. Int J Syst Bacteriol 45, 449–453.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 10, pp. 2496 - 2504

Amplicons resulting from independent PCRs performed on total DNA extracted from samples of two witches’-broom diseased salt cedar trees using primer pair P1/P7. [ PDF] 236 KB

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error