1887

Abstract

A novel anaerobic, chemo-organotrophic bacterium, designated VNs36, was isolated from a well that collected water from a deep saline aquifer used for underground gas storage at a depth of 830 m in the Paris Basin, France. Cells were curved motile rods or vibrios (3.0–5.0×0.5 μm). Strain VNs36 grew at temperatures between 20 and 50 °C (optimum 37 °C) and at pH values between 5.0 and 9.0 (optimum 6.9). It did not require salt for growth, but tolerated up to 20 g NaCl l (optimum 2 g l). In the presence of sulfate, strain VNs36 used lactate, formate and pyruvate as carbon and energy sources. The main fermentation products from lactate were acetate, H and CO. Sulfate, thiosulfate and sulfite were used as electron acceptors, but not sulfur. The genomic DNA G+C content of strain VNs36 was 67.2 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain VNs36 was affiliated with the family within the class . On the basis of 16S rRNA gene sequence comparisons, DNA G+C content and the absence of desulfoviridin in cell extracts, it is proposed that strain VNs36 be assigned to a new genus, gen. nov., as a representative of a novel species, sp. nov. The type species of this genus is with the type strain VNs36 (=DSM 17965=JCM 14038).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010363-0
2009-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/12/3100.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010363-0&mimeType=html&fmt=ahah

References

  1. Basso, O., Lascourrèges, J.-F., Jarry, M. & Magot, M. ( 2005a; ). The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Microbiol 7, 13–21.[CrossRef]
    [Google Scholar]
  2. Basso, O., Caumette, P. & Magot, M. ( 2005b; ). Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 55, 101–104.[CrossRef]
    [Google Scholar]
  3. Basso, O., Lascourrèges, J.-F., Le Borgne, F., Le Goff, C. & Magot, M. ( 2009; ). Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Res Microbiol 160, 107–116.[CrossRef]
    [Google Scholar]
  4. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  5. Birkeland, N.-K. ( 2005; ). Sulfate-reducing bacteria and archaea. In Petroleum Microbiology, pp. 35–54. Edited by B. Ollivier & M. Magot. Washington, DC: American Society for Microbiology.
  6. Fardeau, M.-L., Magot, M., Patel, B. K. C., Thomas, P., Garcia, J.-L. & Ollivier, B. ( 2000; ). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50, 2141–2149.[CrossRef]
    [Google Scholar]
  7. Fauque, G., LeGall, J. & Barton, L. L. ( 1991; ). Sulfate-reducing and sulfur-reducing bacteria. In Variations in Autotrophic Life, pp. 271–337. Edited by J. M. Shively & L. L. Barton. London, UK: Academic Press.
  8. Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D. & Jeanthon, C. ( 2005; ). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54, 427–443.[CrossRef]
    [Google Scholar]
  9. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 211–232. Edited by H. N. Munro. New York: Academic Press.
  11. Kimura, H., Sugihara, M., Yamamoto, H., Patel, B. K. C., Kato, K. & Hanada, S. ( 2005; ). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9, 407–414.[CrossRef]
    [Google Scholar]
  12. Klouche, N., Fardeau, M.-L., Lascourrèges, J.-F., Cayol, J.-L., Hacene, H., Thomas, P. & Magot, M. ( 2007; ). Geosporobacter subterraneus gen. nov., sp. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 57, 1757–1761.[CrossRef]
    [Google Scholar]
  13. Kuever, J., Rainey, F. A. & Widdel, F. ( 2005; ). Genus I. Desulfovibrio. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part C, pp. 926–938. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  14. Magot, M. ( 2005; ). Indigenous microbial communities in oil fields. In Petroleum Microbiology, pp. 21–33. Edited by B. Ollivier & M. Magot. Washington, DC: American Society for Microbiology.
  15. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M. ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  17. Moser, D. P., Gihring, T. M., Brockman, F. J., Fredrickson, J. K., Balkwill, D. L., Dollhopf, M. E., Lollar, B. S., Pratt, L. M., Boice, E. & other authors ( 2005; ). Desulfotomaculum and Methanobacterium spp. dominate a 4-to 5- kilometer-deep fault. Appl Environ Microbiol 71, 8773–8783.[CrossRef]
    [Google Scholar]
  18. Parkes, R. J., Webster, G., Cragg, B. A., Weightman, A. J., Newberry, C. J., Ferdelman, T. G., Kallmeyer, J., Jørgensen, B. B., Aiello, I. W. & Fry, J. C. ( 2005; ). Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390–394.[CrossRef]
    [Google Scholar]
  19. Rampinelli, L. R., Azevedo, R. D., Teixeira, M. C., Guerra-Sá, R. & Leão, V. A. ( 2008; ). A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions. Biodegradation 19, 613–619.[CrossRef]
    [Google Scholar]
  20. Schippers, A. & Neretin, L. N. ( 2006; ). Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8, 1251–1260.[CrossRef]
    [Google Scholar]
  21. Stevens, T. O. & McKinley, J. P. ( 1995; ). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454.[CrossRef]
    [Google Scholar]
  22. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. ( 1998; ). Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95, 6578–6583.[CrossRef]
    [Google Scholar]
  23. Widdel, F. ( 1988; ). Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In Biology of Anaerobic Microorganisms, pp. 469–585. Edited by A. J. B. Zehnder. New York: John Wiley.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010363-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010363-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error