Isolation of the anaerobic thermoacidophilic crenarchaeote sp. nov. and proposal of ord. nov., including fam. nov. and fam. nov. Free

Abstract

An anaerobic acidophilic, hyperthermophilic archaeon, designated strain 345-15, was isolated from an acidic hot spring of Kamchatka (Russia). Cells of strain 345-15 were regular or irregular cocci, 1–2 μm in diameter, with flagella. Strain 345-15 grew optimally at 80–85 °C and pH 3.5–4.0 and fermented a wide range of carbohydrates, including polysaccharides. Acetate, ethanol and lactate were the fermentation products. Growth was stimulated by elemental sulfur and thiosulfate, which were reduced to hydrogen sulfide. The G+C content of the DNA was 54.5 mol%. The 16S rRNA gene sequence analysis indicated that strain 345-15 belonged to the genus . The level of DNA–DNA hybridization between strain 345-15 and 1904 was 61 %. Thus, strain 345-15 was considered as representing a novel species of the genus , with the name sp. nov. (type strain, 345-15=DSM 16705=VKM B-2471), which shared the main morphological and physiological properties of the genus but differed by the presence of flagella and the spectrum of substrates utilized. Phylogenetic analysis showed that the genus with its species sp. nov. and ‘’, and the genus , represented by and ‘’, formed a separate cluster that adjoins the cluster formed by the species of the order . Members of the cluster are thermophilic, organotrophic anaerobic cocci that can be distinguished from all species of the order on the basis of acidophily Based on these considerations, we propose a new family, fam. nov., to accommodate the subcluster of hyperthermophiles represented by the genus , a new family, fam. nov., for the subcluster of extreme thermophiles represented by the genus and a new order, ord. nov., to accommodate the two new families.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010355-0
2009-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/12/3116.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010355-0&mimeType=html&fmt=ahah

References

  1. Aoshima, M., Nishibe, Y., Hasegawa, M., Yamagishi, A. & Oshima, T.(1996). Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12. Gene 180, 183–187.[CrossRef] [Google Scholar]
  2. Boyd, E. S., Jackson, R. A., Encarnasion, G., Zahn, J. A., Beard, T., Leavitt, W. D., Pi, Y., Zhang, C. L., Pearson, A. & Geesey, G. G.(2007). Isolation, characterization, and ecology of sulfur-respiring crenarchaea inhabiting acid-sulfate-chloride-containing geothermal spring in Yellowstone National Park. Appl Environ Microbiol 73, 6669–6677.[CrossRef] [Google Scholar]
  3. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  4. Galtier, N. & Lobry, J. R.(1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44, 632–636.[CrossRef] [Google Scholar]
  5. Garrity, G. M., Bell, J. A. & Lilburn, T.(2005). The revised road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part A, pp. 159–187. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  6. Itoh, T., Suzuki, K. & Nakase, T.(1998).Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int J Syst Bacteriol 48, 879–887.[CrossRef] [Google Scholar]
  7. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T.(1999).Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49, 1157–1163.[CrossRef] [Google Scholar]
  8. Itoh, T., Suzuki, K. & Nakase, T.(2002).Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52, 1097–1104.[CrossRef] [Google Scholar]
  9. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T.(2003).Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 53, 1149–1154.[CrossRef] [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  11. Katoh, K., Misawa, K., Kuma, K. & Miyata, T.(2002).mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059–3066.[CrossRef] [Google Scholar]
  12. Kevbrin, V. V. & Zavarzin, G. A.(1992). The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology 61, 563–571. (English translation of Mikrobiologiia) [Google Scholar]
  13. Korf, S. E., Macur, R. E., Nagy, A. M., Tayler, W. P., Kozubal, M. A., Ackerman, G., Masur, D. & Inskeep, W. P.(2006). Geochemical controls on microbial population distribution at Rainbow and Joseph's Coat hot springs in Yellowstone National Park (unpublished, reference in GenBank documents).
  14. Lebedinsky, A. V., Chernyh, N. A. & Bonch-Osmolovskaya, E. A.(2007). Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry 72, 1299–1312. [Google Scholar]
  15. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  16. Meyer-Dombard, D. R., Shock, E. L. & Amend, J. P.(2005). Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3, 211–227.[CrossRef] [Google Scholar]
  17. Owen, R. J., Hill, L. R. & Lapage, S. P.(1969). Determination of DNA base composition from melting profiles in dilute buffer. Biopolymers 7, 503–516.[CrossRef] [Google Scholar]
  18. Pearson, A., Pi, Y., Zhao, W., Li, W. J., Li, Y., Inskeep, W., Perevalova, A., Romanek, C., Li, S. & Zhang, C. L.(2008). Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl Environ Microbiol 74, 3523–3532.[CrossRef] [Google Scholar]
  19. Perevalova, A. A., Kolganova, T. V., Birkeland, N.-K., Schleper, C., Bonch-Osmolovskaya, E. A. & Lebedinsky, A. V.(2008). Distribution of Crenarchaeote representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74, 7620–7628.[CrossRef] [Google Scholar]
  20. Prokofeva, M. I., Miroshnichenko, M. L., Kostrikina, N. A., Chernyh, N. A., Kuznetsov, B. B., Tourova, T. P. & Bonch-Osmolovskaya, E. A.(2000).Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50, 2001–2008.[CrossRef] [Google Scholar]
  21. Prokofeva, M. I., Kublanov, I. V., Nercessian, O., Tourova, T. P., Kolganova, T. V., Lebedinsky, A. V., Bonch-Osmolovskaya, E. A., Spring, S. & Jeanthon, C.(2005). Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles 9, 437–448.[CrossRef] [Google Scholar]
  22. Reysenbach, A.-L., Liu, Y., Banta, A. B., Beveridge, T. J., Kirshtein, J. D., Schouten, S., Tivey, M. K., Von Damm, K. L. & Voytek, M. A.(2006). A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447.[CrossRef] [Google Scholar]
  23. Segerer, A. H., Trincone, A., Gahrtz, M. & Stetter, K. O.(1991).Stygiolobus azoricus gen., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 41, 495–501.[CrossRef] [Google Scholar]
  24. Siering, P. L., Clarke, J. M. & Wilson, M. S.(2006). Geochemical and biological diversity in acidic, hot springs in Lassen Volcanic National Park. Geomicrobiol J 23, 129–141.[CrossRef] [Google Scholar]
  25. Van de Peer, Y. & De Wachter, R.(1994).treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. . Comput Appl Biol Sci 10, 569–570. [Google Scholar]
  26. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2888. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010355-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010355-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3116 - 3122

Comparison of the characteristics of strain 345-15 ( sp. nov.) and closely related species. [PDF](21 KB)



PDF

Most cited Most Cited RSS feed