1887

Abstract

Two Gram-staining-negative bacterial strains, designated 3A10 and ECP37, were isolated from sediment samples collected from an industrially contaminated site in northern Portugal. These two organisms were rod-shaped, non-motile, aerobic, catalase- and oxidase-positive and formed yellow colonies. The predominant fatty acids were iso-C, anteiso-C, iso-C 9 and iso-C 3-OH. The G+C content of the DNA of strains 3A10 and ECP37 was 43 and 34 mol%, respectively. The major isoprenoid quinone of the two strains was MK-6. 16S rRNA gene sequence analysis revealed that strains 3A10 and ECP37 were members of the family and were related phylogenetically to the genus . Strain 3A10 showed 16S rRNA gene sequence similarity values of 97.2 and 96.6 % to the type strains of and , respectively; strain ECP37 showed 97.3 % similarity to the type strain of . DNA–DNA hybridization experiments revealed levels of genomic relatedness of <70 % between strains 3A10 and ECP37 and between these two strains and the type strains of , and , justifying their classification as representing two novel species of the genus . The names proposed for these organisms are sp. nov. (type strain 3A10 =LMG 24685 =NBRC 104928) and sp. nov. (type strain ECP37 =LMG 24684 =NBRC 104927).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010348-0
2010-02-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/402.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010348-0&mimeType=html&fmt=ahah

References

  1. Alexander, S. K. & Strete, D. ( 2001; ). Microbiology: a Photographic Atlas for the Laboratory, 2nd edn. San Francisco: Benjamin-Cummings Publishing Company.
  2. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. ( 2007; ). GenBank. Nucleic Acids Res 35, 21–25.
    [Google Scholar]
  3. Bernardet, J. F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  4. Bernardet, J.-F., Hugo, C. & Bruun, B. ( 2006; ). The genera Chryseobacterium and Elizabethkingia. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 638–676. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  5. Carvalho, M. F., Alves, C. C. T., Ferreira, M. I. M., De Marco, P. & Castro, P. M. L. ( 2002; ). Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68, 102–105.[CrossRef]
    [Google Scholar]
  6. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  7. Comité de l'Antibiogramme de la Société Française de Microbiologie ( 1998; ). Communiqué du Comité de l'Antibiogramme de la Société Française de Microbiologie. Bull Soc Fr Microbiol 13, 243–258.
    [Google Scholar]
  8. Costa, C. & Jesus-Rydin, C. ( 2001; ). Site investigation on heavy metals contaminated ground in Estarreja – Portugal. Eng Geol 60, 39–47.[CrossRef]
    [Google Scholar]
  9. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1995; ). phylip (phylogeny inference package) version 3.57c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Gomori, G. ( 1990; ). Preparation of buffers. Methods Enzymol 1, 138–146.
    [Google Scholar]
  12. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  13. Hudson, J. A., Morgan, H. W. & Daniel, R. M. ( 1986; ). A numerical classification of some Thermus isolates. J Gen Microbiol 132, 531–540.
    [Google Scholar]
  14. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  15. Kämpfer, P., Lodders, N., Vaneechoutte, M. & Wauters, G. ( 2009; ). Transfer of Sejongia antarctica, Sejongia jeonii, and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov. Int J Syst Evol Microbiol 59, 2238–2240.[CrossRef]
    [Google Scholar]
  16. Kim, M. K., Im, W.-T., Shin, Y. K., Lim, J. H., Kim, S.-H., Lee, B. C., Park, M.-Y., Lee, K. Y. & Lee, S.-T. ( 2004; ). Kaistella koreensis gen. nov., sp. nov., a novel member of the ChryseobacteriumBergeyellaRiemerella branch. Int J Syst Evol Microbiol 54, 2319–2324.[CrossRef]
    [Google Scholar]
  17. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  18. Lane, D. J. ( 1991; ). 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 171–204. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  19. Lee, K., Lee, H. K., Choi, T. H. & Cho, J. C. ( 2007; ). Sejongia marina sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 57, 2917–2921.[CrossRef]
    [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  21. Murray, R. G. E., Doetsch, R. N. & Robinow, F. ( 1994; ). Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  22. Oliveira, R. S., Dodd, J. C. & Castro, P. M. L. ( 2001; ). The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10, 241–247.[CrossRef]
    [Google Scholar]
  23. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  24. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 611–651. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  25. Tiago, I., Teixeira, I., Silva, S., Chung, P., Veríssimo, A. & Manaia, C. ( 2004; ). Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-epsilon-caprolactones. Curr Microbiol 49, 407–414.[CrossRef]
    [Google Scholar]
  26. Tiago, I., Pires, C., Mendes, V., Morais, P. V., da Costa, M. & Veríssimo, A. ( 2005; ). Microcella putealis gen. nov., sp. nov., a gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 28, 479–487.[CrossRef]
    [Google Scholar]
  27. Tiago, I., Mendes, V., Pires, C., Morais, P. V., da Costa, M. & Veríssimo, A. ( 2006; ). Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29, 100–108.[CrossRef]
    [Google Scholar]
  28. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B. ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef]
    [Google Scholar]
  29. Yi, H., Yoon, H. I. & Chun, J. ( 2005; ). Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55, 409–416.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010348-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010348-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error