1887

Abstract

A strictly anaerobic, sluggishly motile, spore-forming, thermophilic bacterium, designated strain AeG, was isolated from microbial mats colonizing a runoff channel formed by free-flowing thermal waters of a bore well (New Lorne Bore; registered number 17263) in the Great Artesian Basin, Australia. Cells of strain AeG were curved rods (2.0–10.0×0.8–1.0 μm) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-citrate medium at 55 °C (range for growth between 45 and 60 °C) and pH 7.0 (range for growth between pH 6.5 and 8.0). Citrate and malate, but no other organic acids, carbohydrates or amino acids could be used in the presence of up to 0.1 % yeast extract. Although yeast extract and/or tryptone were required for growth on citrate, they did not support growth as sole carbon sources. Strain AeG reduced thiosulfate and sulfite in the presence of 0.2 % yeast extract, but not Fe(III), Mn(IV), sulfate, elemental sulfur, nitrate or nitrite. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and in the presence of NaCl concentrations >1 %. The DNA G+C content was 55.4±1.0 mol% as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeG was a member of the family , class ‘’, phylum ‘’ and was most closely related to members of the genus (mean 16S rRNA gene sequence similarity value to type strains was 90.8 %). Based on these results, strain AeG is considered to represent a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is AeG (=JCM 15556=KCTC 5668).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010306-0
2009-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2848.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010306-0&mimeType=html&fmt=ahah

References

  1. Abou-Zeid, D. M., Biebl, H., Spröer, C. & Müller, R.(2004).Propionispora hippei sp. nov., a novel Gram-negative, spore-forming anaerobe that produces propionic acid. Int J Syst Evol Microbiol 54, 951–954.[CrossRef] [Google Scholar]
  2. Andrews, K. T. & Patel, B. K. C.(1996).Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265–269.[CrossRef] [Google Scholar]
  3. Biebl, H., Schwab-Hanisch, H., Spröer, C. & Lünsdorf, H.(2000).Propionispora vibrioides, nov. gen., nov. sp., a new gram-negative, spore-forming anaerobe that ferments sugar alcohols. Arch Microbiol 174, 239–247.[CrossRef] [Google Scholar]
  4. Brock, T. D. & Freeze, H.(1969).Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297. [Google Scholar]
  5. Habermehl, M. A.(1980). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9–38. [Google Scholar]
  6. Haki, G. D. & Rakshit, S. K.(2003). Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89, 17–34.[CrossRef] [Google Scholar]
  7. Head, I. M., Jones, D. M. & Larter, S. R.(2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352.[CrossRef] [Google Scholar]
  8. Kanso, S. & Patel, B. K. C.(2003).Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401–406.[CrossRef] [Google Scholar]
  9. Kanso, S., Greene, A. C. & Patel, B. K. C.(2002).Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52, 869–874.[CrossRef] [Google Scholar]
  10. Lazar, I., Petrisor, I. G. & Yen, T. F.(2007). Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25, 1353–1366.[CrossRef] [Google Scholar]
  11. Love, C. A., Patel, B. K. C., Nichols, P. D. & Stackebrandt, E.(1993).Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16, 244–251.[CrossRef] [Google Scholar]
  12. Lovley, D. R.(2001). Bioremediation. Anaerobes to the rescue. Science 293, 1444–1446.[CrossRef] [Google Scholar]
  13. Lovley, D. R. & Phillips, E. J. P.(1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689. [Google Scholar]
  14. Lovley, D. R. & Phillips, E. J. P.(1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480. [Google Scholar]
  15. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  16. Ogg, C. D. & Patel, B. K. C.(2009a).Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59, 95–101.[CrossRef] [Google Scholar]
  17. Ogg, C. D. & Patel, B. K. C.(2009b).Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 59, 964–971.[CrossRef] [Google Scholar]
  18. Ogg, C. D. & Patel, B. K. C.(2009c).Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia. Int J Syst Evol Microbiol 59, 1100–1107.[CrossRef] [Google Scholar]
  19. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985a). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277–288.[CrossRef] [Google Scholar]
  20. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985b).Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef] [Google Scholar]
  21. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F.(2006).Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef] [Google Scholar]
  22. Redburn, A. C. & Patel, B. K. C.(1994).Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115, 33–38.[CrossRef] [Google Scholar]
  23. Sørensen, J.(1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319–324. [Google Scholar]
  24. Spanevello, M. D.(2001).The phylogeny of prokaryotes associated with Australia's Great Artesian Basin. PhD thesis, School of Biomolecular and Physical Science, Griffith University, Brisbane, Australia.
  25. Spanevello, M. D. & Patel, B. K. C.(2004). The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australia subsurface aquifer runoff channel. FEMS Microbiol Ecol 50, 63–73.[CrossRef] [Google Scholar]
  26. Spanevello, M. D., Yamamoto, H. & Patel, B. K. C.(2002).Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Bacteriol 52, 795–800.[CrossRef] [Google Scholar]
  27. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E.(1994). Microbial manganese oxidation in salt marsh surface sediments using a leuco crystal violet manganese oxide detection technique. Est Coast Shelf Sci 38, 91–112.[CrossRef] [Google Scholar]
  28. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  29. Zeikus, J. G., Hegge, P. W. & Anderson, M. A.(1979).Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41–48.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010306-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010306-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error