A cellulolytic bacterium, strain P2-1, isolated from soil in Thailand, was characterized using a taxonomic approach based on phenotypic and chemotaxonomic characteristics and the 16S rRNA gene sequence. The novel strain was Gram-positive, facultatively anaerobic, spore-forming and rod-shaped. It contained -diaminopimelic as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 52.7 mol%. The major isoprenoid quinone was MK-7. Anteiso-C and iso-C were the dominant cellular fatty acids. Phylogenetic analyses using the 16S rRNA gene sequence showed that the novel strain was affiliated to the genus . Strain P2-1 was closely related to KCTC 3998, KCTC 3910 and KCTC 13015 with 96.3–96.5 % gene sequence similarity. DNA–DNA relatedness, physiological characteristics and some biochemical characteristics clearly distinguished strain P2-1 from related species of the genus . Therefore, strain P2-1 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is P2-1 (=KCTC 13135=PCU 305=TISTR 1888).


Article metrics loading...

Loading full text...

Full text loading...



  1. Ash, C., Priest, F. G. & Collins, M. D.(1994).Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44, 852–853.[CrossRef] [Google Scholar]
  2. Aÿ, J., Götz, F., Borriss, R. & Heinemann, U.(1998). Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95, 6613–6618.[CrossRef] [Google Scholar]
  3. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  4. Berge, O., Guinebretière, M. H., Achouak, W., Normand, P. & Heulin, T.(2002).Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52, 607–616. [Google Scholar]
  5. Chou, J. H., Chou, Y. J., Lin, K. Y., Sheu, S. Y., Sheu, D. S., Arun, A. B., Young, C. C. & Chen, W. M.(2007).Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57, 1346–1350.[CrossRef] [Google Scholar]
  6. Daane, L. L., Harjono, I., Barns, S. M., Launen, L. A., Palleroni, N. J. & Häggblom, M. M.(2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52, 131–139. [Google Scholar]
  7. Dasman, Kajiyama, S., Kawasaki, H., Yagi, M., Seki, T., Fukusaki, E. & Kobayashi, A.(2002).Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52, 1669–1674.[CrossRef] [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  10. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  11. Forbes, L.(1981). Rapid flagella stain. J Clin Microbiol 13, 807–809. [Google Scholar]
  12. Hespell, R. B.(1996). Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32, 291–296.[CrossRef] [Google Scholar]
  13. Khianngam, S., Tanasupawat, S., Lee, J.-S., Lee, K. C. & Akaracharanya, A.(2009a).Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov., and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59, 130–134.[CrossRef] [Google Scholar]
  14. Khianngam, S., Akaracharanya, A., Tanasupawat, S., Lee, K. C. & Lee, J.-S.(2009b).Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59, 564–568.[CrossRef] [Google Scholar]
  15. Ko, C.-H., Chen, W.-L., Tsai, C.-H., Jane, W.-N., Liu, C.-C. & Tu, J.(2007).Paenibacillus campinasensis BL11: a wood material-utilizing bacteria strain isolated from black liquor. Bioresour Technol 98, 2727–2733.[CrossRef] [Google Scholar]
  16. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  17. Lee, H.-J., Shin, D.-J., Cho, N. C., Kim, H.-O., Shin, S.-Y., Im, S.-Y., Lee, H. B., Chun, S. B. & Bai, S.(2000). Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22, 387–392.[CrossRef] [Google Scholar]
  18. Logan, N. A., De Clerck, E., Lerck, E., Lebbe, L., Verhelst, A., Goris, J., Forsyth, G., Rodriguez-Diaz, M., Heyndrickx, M. & De Vos, P.(2004).Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54, 1071–1076.[CrossRef] [Google Scholar]
  19. Morales, P., Madarro, A., Flors, A., Sendra, J. M. & Pérez-González, J. A.(1995). Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17, 424–429.[CrossRef] [Google Scholar]
  20. Nielsen, P. & Sørensen, J.(1997). Multi-target and medium independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22, 183–192.[CrossRef] [Google Scholar]
  21. Pason, P., Kyu, K. L. & Ratanakhanokchai, K.(2006).Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72, 2483–2490.[CrossRef] [Google Scholar]
  22. Pettersson, B., Rippere, K. E., Yousten, A. A. & Priest, F. G.(1999). Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49, 531–540.[CrossRef] [Google Scholar]
  23. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2005a).Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55, 405–408.[CrossRef] [Google Scholar]
  24. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2005b).Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55, 743–746.[CrossRef] [Google Scholar]
  25. Rivas, R., Gutiérrez, C., Abril, A., Mateos, P. F., Martínez-Molina, E., Ventosa, A. & Velázquez, E.(2005c).Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum. Int J Syst Evol Microbiol 55, 1305–1309.[CrossRef] [Google Scholar]
  26. Rivas, R., García-Fraile, P., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2006).Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 56, 2777–2781.[CrossRef] [Google Scholar]
  27. Roux, V. & Raoult, D.(2004).Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54, 1049–1054.[CrossRef] [Google Scholar]
  28. Ruijssenaars, H. J. & Hartsmans, S.(2000). Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55, 143–149. [Google Scholar]
  29. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  30. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  31. Sánchez, M. M., Fritze, D., Blanco, A., Spröer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P. & Pastor, F. I. J.(2005).Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55, 935–939.[CrossRef] [Google Scholar]
  32. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  33. Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., De Vos, P., Logan, N. A. & Heyndrickx, M.(2004).Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54, 885–891.[CrossRef] [Google Scholar]
  34. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  35. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  37. Tanasupawat, S., Thawai, C., Yukphan, P., Moonmangmee, D., Itoh, T., Adachi, O. & Yamada, Y.(2004).Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50, 159–167.[CrossRef] [Google Scholar]
  38. Teather, R. M. & Wood, P. J.(1982). Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43, 777–780. [Google Scholar]
  39. Ten, L. N., Baek, S.-H., Im, W.-T., Lee, M., Oh, H. W. & Lee, S.-T.(2006).Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56, 2677–2681.[CrossRef] [Google Scholar]
  40. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  41. Velázquez, E., de Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R. & Villa, T. G.(2004).Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54, 59–64.[CrossRef] [Google Scholar]
  42. Wang, C.-M., Shyu, C.-L., Ho, S. P. & Chiou, S.-H.(2008). Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett Appl Microbiol 47, 46–53.[CrossRef] [Google Scholar]
  43. Zamost, B. L., Nielson, H. K. & Starnes, R. L.(1991). Thermostable enzymes for industrial applications. J Ind Microbiol Biotechnol 8, 71–82. [Google Scholar]

Data & Media loading...


Cellulase activity around colonies of strain P2-1 on CMC medium flooded with Congo red.


Neighbour-joining tree of 16S rRNA gene sequences showing the phylogenetic relationships between strain P2-1 and all recognized species of the genus . [ PDF] 70 KB

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error