1887

Abstract

A Gram-negative, strictly aerobic bacterium, designated CL-ES53, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53 were short rods and motile by means of monopolar flagella. Strain CL-ES53 grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C 7 (42.0 %), C 9 (14.8 %) and C (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53 revealed that it was a member of the genus and most closely related to (96.9 % sequence similarity) and EPR70 (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53 formed a robust cluster with . Although the 16S rRNA gene sequence similarity between strain CL-ES53 and was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53 was differentiated from and EPR70 on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53 should be classified in the genus within a novel species, for which the name sp. nov. is proposed. The type strain is CL-ES53 (=KCCM 90064 =DSM 19549).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010058-0
2010-03-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/680.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010058-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman,D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Antunes, A., Eder, W., Fareleira, P., Santos, H. & Huber,R. ( 2003; ). Salinisphaera shabanensis gen.nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawaterinterface of the Shaban Deep, Red Sea. Extremophiles 7, 29–34.
    [Google Scholar]
  3. Anzai, Y., Kudo, Y. & Oyaizu, H. ( 1997; ). The phylogeny of the genera Chryseomonas, Flavimonas,and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47, 249–251.[CrossRef]
    [Google Scholar]
  4. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. ( 1966; ). Antibiotic susceptibility testing by a standardizedsingle disk method. Am J Clin Pathol 45, 493–496.
    [Google Scholar]
  5. Bouchotroch, S., Quesada, E., Del Moral, A., Llamas, I. &Béjar, V. ( 2001; ). Halomonas maurasp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef]
    [Google Scholar]
  6. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultativelyanaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  7. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen,A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. &other authors ( 2007; ). The Ribosomal Database Project (RDP-II):introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  8. Collins, M. D. ( 1985; ). Analysis of isoprenoidquinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  9. Crespo-Medina, M., Chatziefthimiou, A., Cruz-Matos, R., Pérez-Rodríguez,I., Barkay, T., Lutz, R. A., Starovoytov, V. & Vetriani, C. ( 2009; ). Salinisphaera hydrothermalis sp. nov, a mesophilic,halotolerant, facultative autotrophic, thiosulfate-oxidizing gammaproteobacteriumfrom deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 59, 1497–1503.[CrossRef]
    [Google Scholar]
  10. Englen, M. D. & Kelley, L. C. ( 2000; ). A rapid DNA isolation procedure for the identification of Campylobacterjejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1981; ). Evolutionarytrees from DNA sequences: a maximum likelihood approach. J MolEvol 17, 368–376.
    [Google Scholar]
  12. Fitch, W. M. ( 1971; ). Toward definingthe course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  13. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  14. Jeon, Y. S., Chung, H., Park, S., Hur, I., Lee, J. H. &Chun, J. ( 2005; ). jphydit: a java-basedintegrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef]
    [Google Scholar]
  15. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism,vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  16. Kim, Y.-G., Choi, D. H., Hyun, S. & Cho, B. C. ( 2007a; ). Oceanobacillus profundus sp. nov., isolated froma deep-sea sediment core. Int J Syst Evol Microbiol 57, 409–413.[CrossRef]
    [Google Scholar]
  17. Kim, Y.-G., Hwang, C. Y., Yoo, K. W., Moon, H. T. & Cho,B. C. ( 2007b; ). Pelagibacillus goriensis gen.nov., sp. nov., a moderately halotolerant bacterium isolated from coastalwater off the east coast of Korea. Int J Syst Evol Microbiol 57, 1554–1560.[CrossRef]
    [Google Scholar]
  18. Lane, D. J. ( 1991; ). 16S/23S rRNAsequencing. In Nucleic Acid Techniques in Bacterial Systematics,pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester:Wiley.
  19. Lemos, M. L., Toranzo, A. E. & Barja, J. L. ( 1985; ). Modified medium for the oxidation-fermentation test in theidentification of marine bacteria. Appl Environ Microbiol 49, 1541–1543.
    [Google Scholar]
  20. Lyman, J. & Fleming, R. H. ( 1940; ).Composition of sea water. J Mar Res 3, 134–146.
    [Google Scholar]
  21. Marmur, J. ( 1961; ). A procedure for theisolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  22. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleicacid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  23. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson,G., Athalye, M., Schaal, K. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinonesand polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  24. Ostle, A. G. & Holt, J. G. ( 1982; ).Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  25. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  26. Saitou, N. & Nei, M. ( 1987; ). Theneighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  27. Skerman, V. B. D. ( 1967; ). A Guideto the Identification of the Genera of Bacteria, 2nd edn. Baltimore:Williams & Wilkins.
  28. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and MolecularBacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray,W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  29. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov.with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov. Int J SystEvol Microbiol 51, 1639–1652.
    [Google Scholar]
  30. Swofford, D. L. ( 1998; ). paup* –Phylogenetic analysis using parsimony, version 4. Sunderland, MA: SinauerAssociates.
  31. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  32. Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K. &Swings, J. ( 1996; ). Polyphasic taxonomy, a consensusapproach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  33. Yoon, J.-H., Kim, I.-G., Kang, K. H., Oh, T.-K. & Park,Y.-H. ( 2003; ). Alteromonas marina sp. nov.,isolated from sea water of the East Sea in Korea. Int J Syst EvolMicrobiol 53, 1625–1630.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010058-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010058-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error