1887

Abstract

An anaerobic, thermophilic, thiosulfate-reducing bacterium, strain AZM16c01, isolated from a hot spring in Japan [Mori, K., Sunamura, M., Yanagawa, K., Ishibashi, J., Miyoshi, Y., Iino, T., Suzuki, K. & Urabe, T. (2008). , 6223–6229] was characterized in detail. The 16S rRNA gene sequence analysis had revealed that strain AZM16c01 was the first cultivated representative of the candidate phylum OP5. The cells were multicellular filaments with a single polar flagellum. The strain contained iso-C as the major fatty acid and menaquinone-8(H), menaquinone-8(H) and menaquinone-8(H) as the respiratory quinones. The G+C content of the genomic DNA of strain AZM16c01 was 34.6 mol%. Optimum growth was obtained at 65 °C, pH 6.5 and in the absence of NaCl, with a doubling time of 10.6 h. On the basis of the results of phylogenetic analysis based on the 16S rRNA gene sequence and the characterization of the strain in this study, we propose the name gen. nov., sp. nov. for strain AZM16c01 (=NBRC 104410=DSM 21853). In addition, we propose the new phylum name phyl. nov. for the candidate phylum OP5 represented by gen. nov., sp. nov., and fam. nov., ord. nov. and classis nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010033-0
2009-11-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2894.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010033-0&mimeType=html&fmt=ahah

References

  1. Collins, M. D. ( 1994; ). Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by M. Goodfellow & A. G. O'Donnell. John Wiley and Sons.
  2. Dojka, M. A., Hugenholtz, P., Haack, S. K. & Pace, N. R. ( 1998; ). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64, 3869–3877.
    [Google Scholar]
  3. Garrity, G. M. & Holt, J. G. ( 2001; ). Class I. Deinococcoi class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 395–420. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  4. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. ( 1998a; ). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376.
    [Google Scholar]
  5. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998b; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765–4774.
    [Google Scholar]
  6. Humayoun, S. B., Bano, N. & Hollibaugh, J. T. ( 2003; ). Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69, 1030–1042.[CrossRef]
    [Google Scholar]
  7. Inagaki, F., Kuypers, M. M., Tsunogai, U., Ishibashi, J., Nakamura, K., Treude, T., Ohkubo, S., Nakaseama, M., Gena, K. & other authors ( 2006; ). Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci U S A 103, 14164–14169.[CrossRef]
    [Google Scholar]
  8. Kaksonen, A. H., Plumb, J. J., Franzmann, P. D. & Puhakka, J. A. ( 2004; ). Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47, 279–289.[CrossRef]
    [Google Scholar]
  9. Ley, R. E., Harris, J. K., Wilcox, J., Spear, J. R., Miller, S. R., Bebout, B. M., Maresca, J. A., Bryant, D. A., Sogin, M. L. & other authors ( 2006; ). Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72, 3685–3695.[CrossRef]
    [Google Scholar]
  10. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  11. Mori, K. & Suzuki, K.-i. ( 2008; ). Thiofaba tepidiphila gen. nov., sp. nov., a novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from a hot spring. Int J Syst Evol Microbiol 58, 1885–1891.[CrossRef]
    [Google Scholar]
  12. Mori, K., Sunamura, M., Yanagawa, K., Ishibashi, J.-i., Miyoshi, Y., Iino, T., Suzuki, K.-i. & Urabe, T. ( 2008; ). First cultivation and ecological investigation of a bacterium affiliated with the candidate phylum OP5 in hot springs. Appl Environ Microbiol 74, 6223–6229.[CrossRef]
    [Google Scholar]
  13. Powers, E. M. ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758.
    [Google Scholar]
  14. Rappé, M. S. & Giovannoni, S. J. ( 2003; ). The uncultured microbial majority. Annu Rev Microbiol 57, 369–394.[CrossRef]
    [Google Scholar]
  15. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef]
    [Google Scholar]
  16. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  17. Skirnisdottir, S., Hreggvidsson, G. O., Hjorleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K. ( 2000; ). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef]
    [Google Scholar]
  18. Spurr, A. R. ( 1969; ). A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef]
    [Google Scholar]
  19. Teske, A., Hinrichs, K. U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S. P., Sogin, M. L. & Jannasch, H. W. ( 2002; ). Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68, 1994–2007.[CrossRef]
    [Google Scholar]
  20. Yamaguchi, T. ( 1965; ). Comparison of the cell-wall composition of morphologically distinct Actinomycetes. J Bacteriol 89, 444–453.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010033-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010033-0
Loading

Data & Media loading...

vol. , part 11, pp. 2894 - 2898

Graphs showing the effects of temperature, pH and NaCl concentration on growth of strain AZM16c01 . [PDF](26 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error