1887

Abstract

A bacterial strain capable of degrading pyrethroid, designated JZ-2, was isolated from activated sludge treating pyrethroid-contaminated wastewater. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JZ-2 belongs to the genus . It showed the highest levels of 16S rRNA gene sequence similarity to JCM 10874 (98.3 %) and CCM 7431 (97.1 %), and 94.8–96.9 % similarity to the type strains of other members of the genus . Strain JZ-2 contained C 7 as the predominant fatty acid, C 2-OH as the major 2-hydroxy fatty acid, ubiquinone Q-10 as the main respiratory quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and two sphingoglycolipids as the predominant polar lipids and spermidine as the major polyamine. DNA–DNA hybridization results showed that strain JZ-2 had low genomic relatedness with JCM 10874 (34 %) and CCM 7431 (23 %). Based on the phenotypic, genotypic and phylogenetic data presented, strain JZ-2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JZ-2 (=CGMCC 1.7749 =DSM 21829).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009795-0
2010-02-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/408.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009795-0&mimeType=html&fmt=ahah

References

  1. Bradbury S. P., Coats J. R. 1989; Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8:373–380 [CrossRef]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Busse H. J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Grant R. J., Daniell T. J., Betts W. B. 2002; Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol 92:534–540 [CrossRef]
    [Google Scholar]
  8. Katsuda Y. 1999; Development of and future prospects for pyrethroid chemistry. Pestic Sci 55:775–782 [CrossRef]
    [Google Scholar]
  9. Kidd H., James D. R. (editors) 1991; The Agrochemicals Handbook . , 3rd edn. pp 2–13 Cambridge: Royal Society of Chemistry Information Services;
  10. Kim S.-J., Chun J., Bae K. S., Kim Y.-C. 2000; Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  13. Kumar A., Sharma B., Pandey R. S. 2008; Cypermethrin and λ -cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus . Fish Physiol Biochem 34:331–338 [CrossRef]
    [Google Scholar]
  14. Lee S., Gan J., Kim J. S., Kabashima J. N., Crowley D. E. 2004; Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23:1–6 [CrossRef]
    [Google Scholar]
  15. Maloney S. E., Maule A., Smith A. R. W. 1988; Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876
    [Google Scholar]
  16. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  17. Ohta H., Hattori T. 1983; Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium.. Antonie van Leeuwenhoek 49:429–446
    [Google Scholar]
  18. Pal R., Bala S., Dadhwal M., Kumar M., Dhingra G., Prakash O., Prabagaran S. R., Shivaji S., Cullum J. other authors 2005 Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972 [CrossRef]
  19. Prakash O., Lal R. 2006; Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56:2147–2152 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Sakata S., Mikami N., Yamada H. 1992; Degradation of pyrethroid optical isomers by soil microorganisms. J Pestic Sci 17:181–189 [CrossRef]
    [Google Scholar]
  22. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Singh A., Lal R. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166 [CrossRef]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  25. Stolz A., Schmidt-Maag C., Denner E. B., Busse H. J., Egli T., Kämpfer P. 2000; Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41 [CrossRef]
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  27. Tallur P. N., Megadi V. B., Ninnekar H. Z. 2008 Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19 77–82 [CrossRef]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Tripathi P. K., Singh A. 2004; Toxic effects of cypermethrin and alphamethrin on reproduction and oxidative metabolism of the freshwater snail, Lymnaea acuminata . Ecotoxicol Environ Saf 58:227–235 [CrossRef]
    [Google Scholar]
  32. Ushiba Y., Takahara Y., Ohta H. 2003; Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048 [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Wittich R. M. 1998; Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol 49:489–499 [CrossRef]
    [Google Scholar]
  35. Wittich R.-M., Busse H.-J., Kämpfer P., Tiirola M., Wieser M., Macedo A. J., Abraham W. R. 2007; Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57:306–310 [CrossRef]
    [Google Scholar]
  36. Young C. C., Ho M. J., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F. 2007; Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57:2613–2617 [CrossRef]
    [Google Scholar]
  37. Young C. C., Arun A. B., Kämpfer P., Busse H.-J., Lai W.-A., Chen W.-M., Shen F.-T., Rekha P. D. 2008; Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58:1801–1806 [CrossRef]
    [Google Scholar]
  38. Yu Y., Fan D. 2003; Preliminary study of an enzyme extracted from Alcaligenes sp. strain YF11 capable of degrading pesticides. Bull Environ Contam Toxicol 70:367–371 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009795-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009795-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error