1887

Abstract

A bacterial strain capable of degrading pyrethroid, designated JZ-2, was isolated from activated sludge treating pyrethroid-contaminated wastewater. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JZ-2 belongs to the genus . It showed the highest levels of 16S rRNA gene sequence similarity to JCM 10874 (98.3 %) and CCM 7431 (97.1 %), and 94.8–96.9 % similarity to the type strains of other members of the genus . Strain JZ-2 contained C 7 as the predominant fatty acid, C 2-OH as the major 2-hydroxy fatty acid, ubiquinone Q-10 as the main respiratory quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and two sphingoglycolipids as the predominant polar lipids and spermidine as the major polyamine. DNA–DNA hybridization results showed that strain JZ-2 had low genomic relatedness with JCM 10874 (34 %) and CCM 7431 (23 %). Based on the phenotypic, genotypic and phylogenetic data presented, strain JZ-2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JZ-2 (=CGMCC 1.7749 =DSM 21829).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009795-0
2010-02-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/408.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009795-0&mimeType=html&fmt=ahah

References

  1. Bradbury, S. P. & Coats, J. R. ( 1989; ). Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8, 373–380.[CrossRef]
    [Google Scholar]
  2. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  3. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  4. Busse, H. J., Bunka, S., Hensel, A. & Lubitz, W. ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef]
    [Google Scholar]
  5. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Grant, R. J., Daniell, T. J. & Betts, W. B. ( 2002; ). Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol 92, 534–540.[CrossRef]
    [Google Scholar]
  8. Katsuda, Y. ( 1999; ). Development of and future prospects for pyrethroid chemistry. Pestic Sci 55, 775–782.[CrossRef]
    [Google Scholar]
  9. Kidd, H. & James, D. R. (editors) ( 1991; ). The Agrochemicals Handbook, 3rd edn, pp. 2–13. Cambridge: Royal Society of Chemistry Information Services.
  10. Kim, S.-J., Chun, J., Bae, K. S. & Kim, Y.-C. ( 2000; ). Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50, 1641–1647.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  13. Kumar, A., Sharma, B. & Pandey, R. S. ( 2008; ). Cypermethrin and λ-cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem 34, 331–338.[CrossRef]
    [Google Scholar]
  14. Lee, S., Gan, J., Kim, J. S., Kabashima, J. N. & Crowley, D. E. ( 2004; ). Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23, 1–6.[CrossRef]
    [Google Scholar]
  15. Maloney, S. E., Maule, A. & Smith, A. R. W. ( 1988; ). Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54, 2874–2876.
    [Google Scholar]
  16. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  17. Ohta, H. & Hattori, T. ( 1983; ). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49, 429–446.
    [Google Scholar]
  18. Pal, R., Bala, S., Dadhwal, M., Kumar, M., Dhingra, G., Prakash, O., Prabagaran, S. R., Shivaji, S., Cullum, J. & other authors ( 2005; ). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972.[CrossRef]
    [Google Scholar]
  19. Prakash, O. & Lal, R. ( 2006; ). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56, 2147–2152.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Sakata, S., Mikami, N. & Yamada, H. ( 1992; ). Degradation of pyrethroid optical isomers by soil microorganisms. J Pestic Sci 17, 181–189.[CrossRef]
    [Google Scholar]
  22. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Singh, A. & Lal, R. ( 2009; ). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59, 162–166.[CrossRef]
    [Google Scholar]
  24. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  25. Stolz, A., Schmidt-Maag, C., Denner, E. B., Busse, H. J., Egli, T. & Kämpfer, P. ( 2000; ). Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50, 35–41.[CrossRef]
    [Google Scholar]
  26. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  27. Tallur, P. N., Megadi, V. B. & Ninnekar, H. Z. ( 2008; ). Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19, 77–82.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  29. Tindall, B. J. ( 1990a; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  30. Tindall, B. J. ( 1990b; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  31. Tripathi, P. K. & Singh, A. ( 2004; ). Toxic effects of cypermethrin and alphamethrin on reproduction and oxidative metabolism of the freshwater snail, Lymnaea acuminata. Ecotoxicol Environ Saf 58, 227–235.[CrossRef]
    [Google Scholar]
  32. Ushiba, Y., Takahara, Y. & Ohta, H. ( 2003; ). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53, 2045–2048.[CrossRef]
    [Google Scholar]
  33. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  34. Wittich, R. M. ( 1998; ). Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol 49, 489–499.[CrossRef]
    [Google Scholar]
  35. Wittich, R.-M., Busse, H.-J., Kämpfer, P., Tiirola, M., Wieser, M., Macedo, A. J. & Abraham, W. R. ( 2007; ). Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57, 306–310.[CrossRef]
    [Google Scholar]
  36. Young, C. C., Ho, M. J., Arun, A. B., Chen, W.-M., Lai, W.-A., Shen, F.-T., Rekha, P. D. & Yassin, A. F. ( 2007; ). Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57, 2613–2617.[CrossRef]
    [Google Scholar]
  37. Young, C. C., Arun, A. B., Kämpfer, P., Busse, H.-J., Lai, W.-A., Chen, W.-M., Shen, F.-T. & Rekha, P. D. ( 2008; ). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58, 1801–1806.[CrossRef]
    [Google Scholar]
  38. Yu, Y. & Fan, D. ( 2003; ). Preliminary study of an enzyme extracted from Alcaligenes sp. strain YF11 capable of degrading pesticides. Bull Environ Contam Toxicol 70, 367–371.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009795-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009795-0
Loading

Data & Media loading...

Supplements

Time-course of degradation of various pyrethroids by strain JZ-2 . [PDF](57 KB)

PDF

Colonies of strain JZ-2 grown on an LB/10 agar plate supplemented with 100 mg fenpropathrin l . The agar plate supplemented with fenpropathrin seems opaque due to the poor solubility of the fenpropathrin in aqueous solution. After 4 days of incubation at 30 °C, a clear transparent zone of fenpropathrin degradation has formed around the colonies.

IMAGE

Two-dimensional TLC of polar lipids of JZ-2 . DPG, Diphosphatidylglycerol; GL1 and GL2, sphingoglycolipids; MMPE, monomethylphosphatidylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol.

IMAGE

Transmission electron micrograph of a negatively stained cell of strain JZ-2 , which is a non-sporulating, non-flagellated short rod (0.5–0.6×1.1–1.2 µm). Bar, 0.5 µm.

IMAGE

Comparison of the cellular fatty acid contents of strain JZ-2 and type strains of recognized species. [PDF](88 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error