1887

Abstract

Three pathogenic variants (i.e. pathotypes) have been described within pv. , the causal agent of Asiatic citrus canker. Pathotype A strains naturally infect a wide range of species and members of some related genera. In contrast, pathotypes A* and A have narrow host ranges within the genus and have been isolated from Mexican lime ( L.) and from Mexican lime and alemow ( L.), respectively. We used amplified fragment length polymorphism (AFLP) and multilocus sequence analysis (MLSA) based on four partial housekeeping gene sequences (, , and ) for the genotypic classification of pv. and the poorly characterized citrus pathogen pv. . A Mantel test showed that genetic distances derived from AFLP and MLSA were highly correlated. pv. showed a close relatedness to the type strain of , indicating that this pathovar should be reclassified as pv. . All pathotype A* and A strains were most closely related to pv. strains with a wide host range (pathotype A), confirming previous DNA–DNA hybridization data. Pathotype A should be considered a junior synonym of pathotype A* on the basis of pathogenicity tests, AFLP, MLSA and PCR using pathovar-specific primers. Evolutionary genome divergences computed from AFLP data suggested that pathotype A* (including A strains) is a group of strains that shows a wider genetic diversity than pathotype A.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009514-0
2010-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/515.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009514-0&mimeType=html&fmt=ahah

References

  1. Ah-You, N., Gagnevin, L., Chiroleu, F., Jouen, E., Neto, J.R. & Pruvost, O. ( 2007; ). Pathological variationswithin Xanthomonas campestris pv. mangiferaeindicae supportits separation into three distinct pathovars that can be distinguished byAmplified Fragment Length Polymorphism. Phytopathology 97, 1568–1577.[CrossRef]
    [Google Scholar]
  2. Ah-You, N., Gagnevin, L., Grimont, P. A. D., Brisse, S., Nesme,X., Chiroleu, F., Bui Thi Ngoc, L., Jouen, E., Lefeuvre, P. & other authors ( 2009; ). Polyphasic characterization of xanthomonadspathogenic to Anacardiaceae and their relatedness to different Xanthomonas species. Int J Syst Evol Microbiol 59, 306–318.[CrossRef]
    [Google Scholar]
  3. Balestra, G. M., Sechler, A., Schuenzel, E. & Schaad, N.W. ( 2008; ). First report of citrus canker caused by Xanthomonas citri in Somalia. Plant Dis 92, 981
    [Google Scholar]
  4. Boni, M. F., Posada, D. & Feldman, M. W. ( 2007; ). An exact nonparametric method for inferring mosaic structurein sequence triplets. Genetics 176, 1035–1047.
    [Google Scholar]
  5. Boudon, S., Manceau, C. & Notteghem, J. L. ( 2005; ). Structure and origin of Xanthomonas arboricolapv. pruni populations causing bacterial spot of stone fruit treesin Western Europe. Phytopathology 95, 1081–1088.[CrossRef]
    [Google Scholar]
  6. Brown, J. M., Hedtke, S. M., Lemmon, A. R. & Lemmon, E.M. ( 2009; ). When trees grow too long: investigatingthe causes of highly inaccurate Bayesian branch-length estimates. SystBiol doi:10.1093/sysbio/syp081
  7. Brunings, A. M. & Gabriel, D. W. ( 2003; ). Xanthomonas citri: breaking the surface. Mol PlantPathol 4, 141–157.
    [Google Scholar]
  8. Bui Thi Ngoc, L., Vernière, C., Pruvost, O., Kositcharoenkul,N. & Phawichit, S. ( 2007; ). First report in Thailandof Xanthomonas axonopodis pv. citri-A* causing citruscanker on lime. Plant Dis 91, 771
    [Google Scholar]
  9. Bui Thi Ngoc, L., Vernière, C., Pruvost, O., So, T. &Johnson, G. I. ( 2008; ). First report of Xanthomonasaxonopodis pv. citri-A* causing citrus canker on lime inCambodia. Plant Dis 92, 1588
    [Google Scholar]
  10. Bui Thi Ngoc, L., Vernière, C., Jarne, P., Brisse, S.,Guérin, F., Boutry, S., Gagnevin, L. & Pruvost, O. ( 2009; ). From local surveys to global surveillance: three high throughputgenotyping methods for the epidemiological monitoring of Xanthomonas citri pv. citri pathotypes. Appl Environ Microbiol 75, 1173–1184.[CrossRef]
    [Google Scholar]
  11. Chelo, I. M., Zé-Zé, L. & Tenreiro, R. ( 2007; ). Congruence of evolutionary relationships inside the LeuconostocOenococcusWeissella cladeassessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57, 276–286.[CrossRef]
    [Google Scholar]
  12. Civerolo, E. L. ( 1984; ). Bacterial cankerdisease of citrus. J Rio Grande Val Hortic Soc 37, 127–145.
    [Google Scholar]
  13. Civerolo, E. L. & Fan, F. ( 1982; ). Xanthomonas campestris pv. citri detection and identificationby enzyme-linked immunosorbent assay. Plant Dis 66, 231–236.[CrossRef]
    [Google Scholar]
  14. Cubero, J. & Graham, J. H. ( 2002; ).Genetic relationship among worldwide strains of Xanthomonas causingcanker in citrus species and design of new primers for their identificationby PCR. Appl Environ Microbiol 68, 1257–1264.[CrossRef]
    [Google Scholar]
  15. Da Silva, A. C., Ferro, J. A., Reinach, F. C., Farah, C. S.,Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A.,Almeida, N. F. & other authors ( 2002; ). Comparisonof the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463.[CrossRef]
    [Google Scholar]
  16. Dowson, W. J. ( 1939; ). On the systematicposition and generic names of the Gram negative bacterial plant pathogens. Zentralbl Bakteriol Parasitenkd Infeckt 2, 177–193.
    [Google Scholar]
  17. Dye, D. W., Bradbury, J. F., Goto, M., Hayward, A. C., Lelliott,R. A. & Schroth, M. N. ( 1980; ). International standardsfor naming pathovars of phytopathogenic bacteria and a list of pathovar namesand pathotype strains. Rev Plant Pathol 59, 153–168.
    [Google Scholar]
  18. Egel, D. S., Graham, J. H. & Riley, T. D. ( 1991; ). Population dynamics of Xanthomonas campestris differingin aggressiveness on Swingle citrumelo and grapefruit. Phytopathology 81, 666–671.[CrossRef]
    [Google Scholar]
  19. Fawcett, H. S. & Jenkins, A. E. ( 1933; ). Records of citrus canker from herbarium specimens of the genus Citrus in England and the United States. Phytopathology 23, 820–824.
    [Google Scholar]
  20. Gabriel, D. W., Kingsley, M. T., Hunter, J. E. & Gottwald,T. ( 1989; ). Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) tospecies and reclassification of all X. campestris pv. citristrains. Int J Syst Bacteriol 39, 14–22.[CrossRef]
    [Google Scholar]
  21. Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye,T., Feil, E. J., Stackebrandt, E., Van de Peer, Y., Vandamme, P. & otherauthors ( 2005; ). Re-evaluating prokaryotic species. Nat Rev Microbiol 3, 733–739.[CrossRef]
    [Google Scholar]
  22. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. ( 2000; ). Sister-Scanning: a Monte Carlo procedure for assessing signalsin recombinant sequences. Bioinformatics 16, 573–582.[CrossRef]
    [Google Scholar]
  23. Gottwald, T. R., Graham, J. H. & Schubert, T. S. ( 2002; ). Citrus canker: the pathogen and its impact. In Plant Health Progress. http://www.plantmanagementnetwork.org/php/elements/sum.aspx?id=2191&photo=412.
  24. Guindon, S. & Gascuel, O. ( 2003; ).A simple, fast, and accurate algorithm to estimate large phylogenies by maximumlikelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  25. Hanage, W. P., Fraser, C. & Spratt, B. G. ( 2005a; ). Fuzzy species among recombinogenic bacteria. BMC Biol 3, 6 [CrossRef]
    [Google Scholar]
  26. Hanage, W. P., Kaijalainen, T., Herva, E., Saukkoriipi, A.,Syrjanen, R. & Spratt, B. G. ( 2005b; ). Using multilocussequence data to define the pneumococcus. J Bacteriol 187, 6223–6230.[CrossRef]
    [Google Scholar]
  27. Hartung, J. S. & Civerolo, E. L. ( 1989; ). Restriction fragment length polymorphism distinguishes Xanthomonascampestris strains isolated from Florida citrus nurseries from X.c. pv. citri. Phytopathology 79, 793–799.[CrossRef]
    [Google Scholar]
  28. Hartung, J. S., Daniel, J. F. & Pruvost, O. P. ( 1993; ). Detection of Xanthomonas campestris pv. citri by the polymerase chain reaction method. Appl Environ Microbiol 59, 1143–1148.
    [Google Scholar]
  29. Hartung, J. S., Pruvost, O. P., Villemot, I. & Alvarez,A. ( 1996; ). Rapid and sensitive colorimetric detectionof Xanthomonas axonopodis pv. citri by immunocapture anda nested-polymerase chain reaction assay. Phytopathology 86, 95–101.[CrossRef]
    [Google Scholar]
  30. Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M.,Vos, P., Zabeau, M. & Kersters, K. ( 1996; ). Evaluationof the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142, 1881–1893.[CrossRef]
    [Google Scholar]
  31. Kimura, M. ( 1980; ). A simple method forestimating evolutionary rates of base substitutions through comparative studiesof nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  32. Louws, F. J., Rademaker, J. L. W. & De Bruijn, F. J. ( 1999; ). The three Ds of PCR-based genomic analysis of phytobacteria:diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37, 81–125.[CrossRef]
    [Google Scholar]
  33. Mantel, N. ( 1967; ). The detection ofdisease clustering and a generalized regression approach. CancerRes 27, 209–220.
    [Google Scholar]
  34. Martens, M., Delaere, M., Coopman, R., De Vos, P., Gillis, M. &Willems, A. ( 2007; ). Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57, 489–503.[CrossRef]
    [Google Scholar]
  35. Martin, D. & Rybicki, E. ( 2000; ).RDP: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.[CrossRef]
    [Google Scholar]
  36. Martin, D. P., Posada, D., Crandall, K. A. & Williamson,C. ( 2005a; ). A modified bootscan algorithm for automatedidentification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21, 98–102.[CrossRef]
    [Google Scholar]
  37. Martin, D. P., Williamson, C. & Posada, D. ( 2005b; ). RDP2: recombination detection and analysis from sequencealignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  38. Maynard-Smith, J. ( 1992; ). Analyzingthe mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  39. Mougel, C., Thioulouse, J., Perrière, G. & Nesme,X. ( 2002; ). A mathematical method for determining genomedivergence and species delineation using AFLP. Int J Syst EvolMicrobiol 52, 573–586.
    [Google Scholar]
  40. Nei, M. & Gojobori, T. ( 1986; ). Simplemethods for estimating the numbers of synonymous and nonsynonymous nucleotidesubstitutions. Mol Biol Evol 3, 418–426.
    [Google Scholar]
  41. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.[CrossRef]
    [Google Scholar]
  42. Paradis, E., Claude, J. & Strimmer, K. ( 2004; ). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.[CrossRef]
    [Google Scholar]
  43. Patel, M. K., Allayyanavaramath, S. B. & Kulkarni, Y. S. ( 1953; ). Bacterial shot-hole and fruit canker of Aegle marmelos Correa. Curr Sci 22, 216–217.
    [Google Scholar]
  44. Peakall, R. & Smouse, P. E. ( 2006; ). GENALEX 6: genetic analysis in Excel. Population genetic software forteaching and research. Mol Ecol Notes 6, 288–295.[CrossRef]
    [Google Scholar]
  45. Portier, P., Fischer-Le Saux, M., Mougel, C., Lerondelle, C.,Chapulliot, D., Thioulouse, J. & Nesme, X. ( 2006; ). Identification of genomic species in Agrobacterium biovar 1by AFLP genomic markers. Appl Environ Microbiol 72, 7123–7131.[CrossRef]
    [Google Scholar]
  46. Posada, D. ( 2006; ). ModelTest Server:a web-based tool for the statistical selection of models of nucleotide substitutiononline. Nucleic Acids Res 34, W700–W703.[CrossRef]
    [Google Scholar]
  47. Posada, D. & Buckley, T. R. ( 2004; ). Model selection and model averaging in phylogenetics: advantages of Akaikeinformation criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53, 793–808.[CrossRef]
    [Google Scholar]
  48. Posada, D. & Crandall, K. A. ( 2001; ). Evaluation of methods for detecting recombination from DNA sequences:computer simulations. Proc Natl Acad Sci U S A 98, 13757–13762.[CrossRef]
    [Google Scholar]
  49. Pruvost, O., Hartung, J. S., Civerolo, E. L., Dubois, C. &Perrier, X. ( 1992; ). Plasmid DNA fingerprints distinguishpathotypes of Xanthomonas campestris pv. citri, the causalagent of citrus bacterial canker disease. Phytopathology 82, 485–490.[CrossRef]
    [Google Scholar]
  50. Pruvost, O., Roumagnac, P., Gaube, C., Chiroleu, F. & Gagnevin,L. ( 2005; ). New media for the semi-selective isolationand enumeration of Xanthomonas campestris pv. mangiferaeindicae, the causal agent of mango bacterial black spot. J Appl Microbiol 99, 803–815.[CrossRef]
    [Google Scholar]
  51. Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K.,Swings, J., Vauterin, L., Vauterin, P. & De Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting withDNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  52. Rademaker, J. L. W., Louws, F. J., Schultz, M. H., Rossbach,U., Vauterin, L., Swings, J. & De Bruijn, F. J. ( 2005; ). A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology 95, 1098–1111.[CrossRef]
    [Google Scholar]
  53. Rademaker, J. L. W., Norman, D. J., Forster, R. L., Louws, F.J., Schultz, A. H. & Bruijn, F. J. ( 2006; ). Classificationand identification of Xanthomonas translucens isolates, includingthose pathogenic to ornamental asparagus. Phytopathology 96, 876–884.[CrossRef]
    [Google Scholar]
  54. Richter, D., Postic, D., Sertour, N., Livey, I., Matuschka,F. R. & Baranton, G. ( 2006; ). Delineation of Borrelia burgdorferi sensu lato species by multilocus sequenceanalysis and confirmation of the delineation of Borrelia spielmaniisp. nov. Int J Syst Evol Microbiol 56, 873–881.[CrossRef]
    [Google Scholar]
  55. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  56. Roumagnac, P., Gagnevin, L., Gardan, L., Sutra, L., Manceau,C., Dickstein, E. R., Jones, J. B., Rott, P. & Pruvost, O. ( 2004; ). Polyphasic characterization of xanthomonads isolated fromonion, garlic and Welsh onion (Allium spp.) and their relatednessto different Xanthomonas species. Int J Syst Evol Microbiol 54, 15–24.[CrossRef]
    [Google Scholar]
  57. Rozas, J., Sanchez-Del Barrio, J. C., Messeguer, X. & Rozas,R. ( 2003; ). DnaSP, DNA polymorphism analyses by thecoalescent and other methods. Bioinformatics 19, 2496–2497.[CrossRef]
    [Google Scholar]
  58. Schaad, N. W., Postnikova, E., Lacy, G. H., Sechler, A., Agarkova,I., Stromberg, P. E., Stromberg, V. K. & Vidaver, A. K. ( 2005; ). Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, andE as X. smithii subsp. citri (ex Hasse) sp. nov.nom. rev. comb. nov., X. fuscans subsp. aurantifolii (exGabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfaesubsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum (ex Smith 1901) Dye 1978 as X. smithiisubsp. smithii nov. comb. nov. nom. nov.; X. campestrispv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al.,1935) sp. nov. nom. rev.; and “var. fuscans” of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978as X. fuscans subsp. fuscans sp. nov. Syst ApplMicrobiol 28, 494–518.
    [Google Scholar]
  59. Schaad, N. W., Postnikova, E., Lacy, G. H., Sechler, A., Agarkova,I., Stromberg, P. E., Stromberg, V. K. & Vidaver, A. K. ( 2006; ). Emended classification of xanthomonad pathogens on citrus. Syst Appl Microbiol 29, 690–695.[CrossRef]
    [Google Scholar]
  60. Schmidt, H. A., Strimmer, K., Vingron, M. & Von Haeseler,A. ( 2002; ). tree-puzzle: maximumlikelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
  61. Scortichini, M. & Rossi, M. P. ( 2003; ). Genetic diversity of Xanthomonas arboricola pv. fragariae strains and comparison with some other X. arboricola pathovarsusing repetitive PCR genomic fingerprinting. J Phytopathol 151, 113–119.[CrossRef]
    [Google Scholar]
  62. Shimodaira, M. & Hasegawa, M. ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogeneticinference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  63. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont,P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora,R., Swings, J. & other authors ( 2002; ). Reportof the ad hoc committee for the re-evaluation of the species definition inbacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  64. Stolp, H., Starr, M. P. & Baigent, N. L. ( 1965; ). Problems in speciation of phytopathogenic pseudomonads andxanthomonads. Annu Rev Phytopathol 3, 231–265.[CrossRef]
    [Google Scholar]
  65. Sun, X. A., Stall, R. E., Jones, J. B., Cubero, J., Gottwald,T. R., Graham, J. H., Dixon, W. N., Schubert, T. S., Chaloux, P. H. &other authors ( 2004; ). Detection and characterizationof a new strain of citrus canker bacteria from Key Mexican lime and Alemowin South Florida. Plant Dis 88, 1179–1188.[CrossRef]
    [Google Scholar]
  66. Tajima, F. ( 1989; ). Statistical methodfor testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
    [Google Scholar]
  67. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  68. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignmentaided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  69. Traoré, Y. N., Bui Thi Ngoc, L., Vernière, C. &Pruvost, O. ( 2008; ). First report of Xanthomonascitri pv. citri causing citrus canker in Mali. PlantDis 92, 977
    [Google Scholar]
  70. Vauterin, L., Hoste, B., Kersters, K. & Swings, J. ( 1995; ). Reclassification of Xanthomonas. Int J Syst Bacteriol 45, 472–489.[CrossRef]
    [Google Scholar]
  71. Verdier, V., Restrepo, S., Mosquera, G., Duque, M. C., Gerstl,A. & Laberry, R. ( 1998; ). Genetic and pathogenicvariation of Xanthomonas axonopodis pv. manihotis in Venezuela. Plant Pathol 47, 601–608.[CrossRef]
    [Google Scholar]
  72. Vernière, C., Pruvost, O., Civerolo, E. L., Gambin, O.,Jacquemoud-Collet, J. P. & Luisetti, J. ( 1993; ).Evaluation of the Biolog substrate utilization system to identify and assessmetabolic variation among strains of Xanthomonas campestris pv. citri. Appl Environ Microbiol 59, 243–249.
    [Google Scholar]
  73. Vernière, C., Hartung, J. S., Pruvost, O. P., Civerolo,E. L., Alvarez, A. M., Maestri, P. & Luisetti, J. ( 1998; ). Characterization of phenotypically distinct strains of Xanthomonasaxonopodis pv. citri from Southwest Asia. Eur J PlantPathol 104, 477–487.
    [Google Scholar]
  74. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T.,Hornes, M., Frijters, A., Pot, J., Peleman, J. & other authors ( 1995; ). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23, 4407–4414.[CrossRef]
    [Google Scholar]
  75. Young, J. M., Takikawa, Y., Gardan, L. & Stead, D. E. ( 1992; ). Changing concepts in the taxonomy of plant pathogenicbacteria. Annu Rev Phytopathol 30, 67–105.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009514-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009514-0
Loading

Data & Media loading...

vol. , part 3, pp. 515 - 525

strains used for AFLP and MLSA.

AFLP primers and adaptors used in this study.

Amplification and sequencing primers used in the MLSA scheme

Maximum-likelihood trees derived from the GTR+Γ+I (Figs S1, S2 and S4) or TIM+Γ+I (Fig. S3) model, based on partial (Fig. S1), (Fig. S2), (Fig. S3) and (Fig. S4) sequences, showing the relationships between and some other genospecies, including subgroups.

Neighbour-joining (Fig. S5) and Bayesian maximum-likelihood inference (Fig. S6) trees derived from the GTR+Γ+I model, based on concatenated partial , , and sequences, showing the relationships between and some other genospecies, including subgroups.

[PDF file of Supplementary Tables and Figures](265 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error