1887

Abstract

A novel, strictly anaerobic, thermophilic, sulfate-reducing bacterium, designated strain AT1325, was isolated from a deep-sea hydrothermal vent at the Rainbow site on the Mid-Atlantic Ridge. This strain was subjected to a polyphasic taxonomic analysis. Cells were Gram-negative motile rods (approximately 2.4×0.6 μm) with a single polar flagellum. Strain AT1325 grew at 55–75 °C (optimum, 65–70 °C), at pH 5.5–8.0 (optimum, 6.5–7.5) and in the presence of 1.5–4.5 % (w/v) NaCl (optimum, 2.5 %). Cells grew chemolithoautotrophically with H as an energy source and as an electron acceptor. Alternatively, the novel isolate was able to use methylamine, peptone or yeast extract as carbon sources. The dominant fatty acids (>5 % of the total) were C, C 7, C and C cyclo 8. The G+C content of the genomic DNA of strain AT1325 was 45.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences placed strain AT1325 within the family , in the bacterial domain. Comparative 16S rRNA gene sequence analysis indicated that strain AT1325 belonged to the genus , sharing 97.8 % similarity with the type strain of the unique representative species of this genus. On the basis of the data presented, it is suggested that strain AT1325 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AT1325 (=DSM 21156=JCM 15391).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009449-0
2010-01-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/33.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009449-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G., Cueff V., Cambon-Bonavita M.-A. 2002; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E., Lipman D. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  7. Garrity G. M., Holt J. G. 2001; Phylum BIII. Thermodesulfobacteria phy. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp 389–393 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  8. Hatchikian E. C., Ollivier B., Garcia J.-J. 2001; Family I. Thermodesulfobacteriaceae fam. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1p–390 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  9. Itoh T., Suzuki K.-I., Sanchez P. C., Nakase T. 1999; Caldivirga maquilingensis gen. nov., sp. nov. a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 491157–1163 [CrossRef]
    [Google Scholar]
  10. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  12. Kashefi K., Holmes D. E., Reysenbach A.-L., Lovley D. R. 2002; Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov. Appl Environ Microbiol 68:1735–1742 [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  14. Moussard H., L'Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A.-L., Jeanthon C. 2004; Thermodesulfatator indicus gen. nov., sp. nov. a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233 [CrossRef]
    [Google Scholar]
  15. Nakagawa T., Fukui M. 2003; Molecular characterization of community structures and sulfur metabolism within microbial streamers in Japanese hot springs. Appl Environ Microbiol 69:7044–7057 [CrossRef]
    [Google Scholar]
  16. Nakagawa S., Takai K., Inagaki F., Chiba H., Ishibashi J., Kataoka S., Hirayama H., Nunoura T., Horikoshi K., Sako Y. 2005; Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155 [CrossRef]
    [Google Scholar]
  17. Postec A., Urios L., Lesongeur F., Ollivier B., Querellou J., Godfroy A. 2005; Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems. Curr Microbiol 50:138–144 [CrossRef]
    [Google Scholar]
  18. Postec A., Lesongeur F., Pignet P., Ollivier B., Querellou J., Godfroy A. 2007; Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11:747–757 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Skirnisdottir S., Hreggvidsson G. O., Hjörleifsdottir S., Marteinsson V. T., Petursdottir S. K., Holst O., Kristjansson J. K. 2000; Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  24. Zeikus J. G., Dawson M.-A., Thompson T. E., Ingvorsen K., Hatchikian E. C. 1983; Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009449-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009449-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error