Three obligately aerobic, heterotrophic bacteria, designated strains WM1, TPB606 and TPB621, were isolated from acidic -dominated tundra and Siberian wetlands in Russia. Cells of these isolates were Gram-negative, non-motile coccobacilli that occurred singly, in pairs or in chains, and were covered by large capsules. The novel strains were moderately acidophilic and psychrotolerant organisms capable of growth at pH 3.0–7.6 and 2–30 °C. Cells contained numerous intracellular poly--hydroxybutyrate granules (3–4 per cell). The major cellular fatty acid was cyclo C 8 and the predominant quinone was Q-10. Strains TPB606 and TPB621, isolated from Siberian wetland, possessed almost identical 16S rRNA gene sequences and shared 97.2 % sequence similarity with tundra strain WM1. The three strains were shown to belong to the , but were related only distantly to the type strains of acidophilic bacteria (93.4–94.3 % 16S rRNA gene sequence similarity), (92.2–93.3 %), and members of the genera (91.3–93 %) and (91.8–92.4 %). The DNA G+C contents of the novel strains were 60.5–61.9 mol%. The low levels of DNA–DNA relatedness (37 %) and a number of phenotypic differences between the Siberian strains TPB606 and TPB621 and the tundra strain WM1 indicated that they represent two separate species. As the three isolates are clearly distinct from all recognized acidophilic members of the , they are considered to represent two novel species of a new genus, for which the names gen. nov., sp. nov. and sp. nov. are proposed. The type strain of is TPB606 (=DSM 21000=VKM B-2487) and the type strain of is WM1 (=DSM 19999=VKM B-2488).


Article metrics loading...

Loading full text...

Full text loading...



  1. Collins, M. D.(1985). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366. [Google Scholar]
  2. Dedysh, S. N., Berestovskaya, Y. Y., Vasylieva, L. V., Belova, S. E., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Liesack, W. & Zavarzin, G. A.(2004).Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54, 151–156.[CrossRef] [Google Scholar]
  3. Dedysh, S. N., Pankratov, T. A., Belova, S. E., Kulichevskaya, I. S. & Liesack, W.(2006). Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72, 2110–2117.[CrossRef] [Google Scholar]
  4. De Ley, J., Cattoir, K. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  5. Felsenstein, J.(1989).phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166. [Google Scholar]
  6. García-Moyano, A., Gonzáles-Toril, E., Aguilera, A. & Amils, R.(2007). Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). Syst Appl Microbiol 30, 601–614.[CrossRef] [Google Scholar]
  7. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B. (editors)(1981).Manual of Methods for General Bacteriology. Washington, DC: American Society for Microbiology.
  8. Harrison, A. P., Jr(1981).Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31, 327–332.[CrossRef] [Google Scholar]
  9. Hiraishi, A.(2005a). Genus III. Acidisphaera. In Bergey's Manual of Systematic Bacteriology, pp. 62–64. Edited by G. M. Garrity. New York: Springer.
  10. Hiraishi, A.(2005b). Genus IV. Acidocella. In Bergey's Manual of Systematic Bacteriology, pp. 65–68. Edited by G. M. Garrity. New York: Springer.
  11. Hiraishi, A. & Imhoff, J. F.(2005). Genus II. Acidiphilium. In Bergey's Manual of Systematic Bacteriology, pp. 54–62. Edited by G. M. Garrity. New York: Springer.
  12. Hiraishi, A., Nagashima, K. V. P., Matsuura, K., Shimada, K., Takaichi, S., Wakao, N. & Katayama, Y.(1998). Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48, 1389–1398.[CrossRef] [Google Scholar]
  13. Hiraishi, A., Matsuzawa, Y., Kanbe, T. & Wakao, N.(2000).Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50, 1539–1546.[CrossRef] [Google Scholar]
  14. Imhoff, J. F.(2006). The phototrophic Alpha-Proteobacteria. In The Prokaryotes, 3rd edn, vol. 5, pp. 41–64. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  15. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of the coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  16. Kates, M.(1972).Techniques of Lipidology. New York: American Elsevier Publishing Co., Inc.
  17. Kishimoto, N., Kosako, Y., Wakao, N., Tano, T. & Hiraishi, A.(1995). Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 18, 85–91.[CrossRef] [Google Scholar]
  18. Kulichevskaya, I. S., Guzev, V. S., Gorlenko, V. M., Liesack, W. & Dedysh, S. N.(2006).Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Int J Syst Evol Microbiol 56, 1397–1402.[CrossRef] [Google Scholar]
  19. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  20. Madigan, M. T. & Imhoff, J. F.(2005). Genus XI. Rhodopila. In Bergey's Manual of Systematic Bacteriology, pp. 83–85. Edited by G. M. Garrity. New York: Springer.
  21. Nogales, B., Moore, E. R. B., Llobet-Brossa, E., Rossello-Mora, R., Amann, R. & Timmis, K. N.(2001). Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67, 1874–1884.[CrossRef] [Google Scholar]
  22. Owen, R. J., Lapage, S. P. & Hill, L. R.(1969). Determination of base composition from melting profiles in dilute buffers. Biopolymers 7, 503–516.[CrossRef] [Google Scholar]
  23. Saitoh, S., Suzuki, T. & Nishimura, Y.(1998). Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil. Int J Syst Bacteriol 48, 1043–1047.[CrossRef] [Google Scholar]
  24. Vasilyeva, L. V.(2005). Genus XIV. Stella. In Bergey's Manual of Systematic Bacteriology, pp. 93–95. Edited by G. M. Garrity. New York: Springer.
  25. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  26. Weyant, R. S. & Whitney, A. M.(2005). Genus XIII. Roseomonas. In Bergey's Manual of Systematic Bacteriology, pp. 88–93. Edited by G. M. Garrity. New York: Springer.
  27. Yurkov, V. V.(2005). Genus XII. Roseococcus. In Bergey's Manual of Systematic Bacteriology, pp. 85–87. Edited by G. M. Garrity. New York: Springer.

Data & Media loading...


Phase-contrast micrographs of cells of strains WM1 ( gen. nov., sp. nov.), TPB606 ( sp. nov.) and TPB621. [PDF](262 KB)


Influence of medium pH on the growth of strain WM1 ( gen. nov., sp. nov.). [PDF](34 KB)


Two-dimensional thin-layer chromatographs of polar lipid extracts from strains WM1 ( gen. nov., sp. nov.) and TPB606 ( sp. nov.). [PDF](262 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error