1887

Abstract

A Gram-negative, aerobic, rod-shaped, motile, marine bacterium, strain AR11, was isolated from Arctic marine sediment. Strain AR11 grew with 0.5–7 % NaCl and at 7–37 °C and pH 5.5–9.0. It utilized propionate, 3-hydroxybenzoate, -proline, acetate, - and -lactate, -alanine, malate and phenylacetic acid. Alkaline phosphatase, esterase lipase (C8), leucine arylamidase and acid phosphatase activity tests were positive. Acid was produced from 5-ketogluconate and aesculin. Strain AR11 possessed C (22.0 %), summed feature 4 (C 7 and/or iso-C 2-OH; 28.1 %) and summed feature 7 (one or more of C 7, 9 and 12; 34.0 %) as the major cellular fatty acids. The major ubiquinone was Q-8. Comparative 16S rRNA gene sequence studies showed that strain AR11 belonged to the and was most closely related to DSM 7027, mano11 and KW-40 (97.8, 97.0 and 96.7 % similarity, respectively). The G+C content of the genomic DNA of strain AR11 was 57.9 mol%. DNA–DNA relatedness data indicated that strain AR11 represented a distinct species that was separated from DSM 7027, KCTC 12240 and JCM 21667. On the basis of evidence from this polyphasic study, it is proposed that strain AR11 (=KCTC 22254=JCM 15134) represents the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009134-0
2009-12-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/12/3030.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009134-0&mimeType=html&fmt=ahah

References

  1. Baumann, P., Bowditch, R. D., Baumann, L. & Beaman, B. ( 1983; ). Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Bacteriol 33, 857–865.[CrossRef]
    [Google Scholar]
  2. Bowditch, R. D., Baumann, L. & Baumann, P. ( 1984; ). Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr Microbiol 10, 221–230.[CrossRef]
    [Google Scholar]
  3. Chang, H.-W., Nam, Y.-D., Kwon, H.-Y., Park, J. R., Lee, J.-S., Yoon, J.-H., An, K.-G. & Bea, J.-W. ( 2007; ). Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 57, 77–80.[CrossRef]
    [Google Scholar]
  4. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B. ( 1997; ). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47, 369–376.[CrossRef]
    [Google Scholar]
  9. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  10. Kim, H., Choo, Y.-J., Song, J., Lee, J.-S., Lee, K. C. & Cho, J.-C. ( 2007; ). Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 57, 1659–1662.[CrossRef]
    [Google Scholar]
  11. Kim, Y.-G., Jin, Y.-A., Hwang, C. Y. & Cho, B. C. ( 2008; ). Marinobacterium rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Int J Syst Evol Microbiol 58, 164–167.[CrossRef]
    [Google Scholar]
  12. Kimura, M. ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Lee, J.-S., Shin, Y. K., Yoon, J.-H., Takeuchi, M., Pyun, Y.-R. & Park, Y.-H. ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51, 1491–1498.
    [Google Scholar]
  15. Levring, T. ( 1946; ). Some culture experiments with Ulva and artificial seawater. K Fysiogr Sallsk Lund Forhandl 16, 45–56.
    [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  17. MIDI ( 1999; ). Sherlock Microbial Identification System, Operating Manual, version 3.0. Newark, DE: MIDI.
  18. Park, S.-J., Kang, C.-H. & Rhee, S.-K. ( 2006; ). Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbiol Biotechnol 16, 1640–1645.
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Satomi, M., Kimura, B., Hamada, T., Harayama, S. & Fujii, T. ( 2002; ). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52, 739–747.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  22. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009134-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009134-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3030 - 3034

Phylogenetic relationships of isolate AR11 and some related micro-organisms on the basis of 16S rRNA gene sequences. [PDF](62 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error