1887

Abstract

Five Gram-stain-positive, motile, aerobic strains were isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. All strains are rod-shaped, spore-forming bacteria, whose spores were resistant to UV radiation up to 1000 J m. The spores were subterminally positioned and produced an external layer. A polyphasic taxonomic study including traditional biochemical tests, fatty acid analysis, cell-wall typing, lipid analyses, 16S rRNA gene sequencing and DNA–DNA hybridization studies was performed to characterize these novel strains. 16S rRNA gene sequencing and lipid analyses convincingly grouped these novel strains within the genus as a cluster separate from already described species. The similarity of 16S rRNA gene sequences among the novel strains was >99 %, but the similarity was only about 97 % with their nearest neighbours , and . DNA–DNA hybridization dissociation values were <24 % to the closest related type strains. The novel strains had a G+C content 35.6±0.5 mol% and could liquefy gelatin but did not utilize or produce acids from any of the carbon substrates tested. The major fatty acids were iso-C and anteiso-C and the cell-wall diamino acid was meso-diaminopimelic acid. Based on phylogenetic and phenotypic results, it is concluded that these strains represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1P01SC (=NRRL B-59162 =MTCC 9535).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008979-0
2010-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1031.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008979-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Yamazoe A., Fujiwara T. 2007; Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125 [CrossRef]
    [Google Scholar]
  2. Albert R. A., Archambault J., Lempa M., Hurst B., Richardson C., Gruenloh S., Duran M., Worliczek H. L., Huber B. E. other authors 2007; Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi , Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen.nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov.. Int J Syst Evol Microbiol 57:2729–2737 [CrossRef]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  4. Cole R. M., Popkin T. J. 1981; Electron microscopy. In Manual of Methods for General Bacteriology pp 34–51 Edited by Gerhardt P., Murray R. G. E., Costilaw R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Crawford R. L. 2005; Microbial diversity and its relationship to planetary protection. Appl Environ Microbiol 71:4163–4168 [CrossRef]
    [Google Scholar]
  6. Ghosh S., Osman S., Vaishampayan P., Venkateswaran K. 2010; Recurrent isolation of extremo-tolerant bacteria from the clean room where Phoenix spacecraft components are assembled. Astrobiology (in press
  7. Healy M., Huong J., Bittner T., Lising M., Frye S., Raza S., Schrock R., Manry J., Renwick A. other authors 2005; Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43:199–207 [CrossRef]
    [Google Scholar]
  8. Heyrman J., Vanparys B., Logan N. A., Balcaen A., Rodriguez-Diaz M., Felske A., De Vos P. 2004; Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov.and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57 [CrossRef]
    [Google Scholar]
  9. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology pp 450–472 Edited by Gerhardt P., Murray R. G. E., Costilaw R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  11. Kämpfer P. 2002; Whole-cell fatty acid analysis in the systematics of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp 271–299 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell Science;
    [Google Scholar]
  12. Kempf M. J., Chen F., Kern R., Venkateswaran K. 2005; Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5:391–405 [CrossRef]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  14. La Duc M. T., Nicholson W., Kern R., Venkateswaran K. 2003; Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985 [CrossRef]
    [Google Scholar]
  15. La Duc M. T., Kern R., Venkateswaran K. 2004a; Microbial monitoring of spacecraft and associated environments. Microb Ecol 47:150–158 [CrossRef]
    [Google Scholar]
  16. La Duc M. T., Satomi M., Agata N., Venkateswaran K. 2004b; gyrB as a phylogenetic discriminator for members of the Bacillus anthracis - cereus - thuringiensis group. J Microbiol Methods 56:383–394 [CrossRef]
    [Google Scholar]
  17. La Duc M. T., Satomi M., Venkateswaran K. 2004c; Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol 54:195–201 [CrossRef]
    [Google Scholar]
  18. La Duc M. T., Dekas A. E., Osman S., Moissl C., Newcombe D., Venkateswaran K. 2007; Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean-room environments. Appl Environ Microbiol 73:2600–2611 [CrossRef]
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  20. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  21. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  22. NASA 1980; Standard procedures for the microbiological examination of space hardware , NHB 5340.1B, Rev. B.. Washington, DC: National Aeronautics and Space Administration;
  23. Newcombe D. A., Schuerger A. C., Benardini J. N., Dickinson D., Tanner R., Venkateswaran K. 2005; Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156 [CrossRef]
    [Google Scholar]
  24. Osman S., Satomi M., Venkateswaran K. 2006; Paenibacillus pasadenensis sp. nov. and Paenibacillus barengoltzii sp. nov., isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 56:1509–1514 [CrossRef]
    [Google Scholar]
  25. Osman S., Moissl C., Hosoya N., Briegel A., Mayilraj S., Satomi M., Venkateswaran K. 2007; Tetrasphaera remsis sp. nov., isolated from the Regenerative Enclosed Life Support Module Simulator (REMS) air system. Int J Syst Evol Microbiol 57:2749–2753 [CrossRef]
    [Google Scholar]
  26. Satomi M., La Duc M. T., Venkateswaran K. 2006; Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 56:1735–1740 [CrossRef]
    [Google Scholar]
  27. Shaw S., Keddie R. M. 1983; A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov. Syst Appl Microbiol 4:253–276 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  30. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19:333–355
    [Google Scholar]
  31. Vaishampayan P., Miyashita M., Ohnishi A., Satomi M., Rooney A., La Duc M. T., Venkateswaran K. 2009; Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol 59:1094–1099 [CrossRef]
    [Google Scholar]
  32. Venkateswaran K., Moser D. P., Dollhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M. other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  33. Venkateswaran K., Satomi M., Chung S., Kern R., Koukol R., Basic C., White D. 2001; Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol 24:311–320 [CrossRef]
    [Google Scholar]
  34. Venkateswaran K., Hattori N., La Duc M. T., Kern R. 2003a; ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 52:367–377 [CrossRef]
    [Google Scholar]
  35. Venkateswaran K., Kempf M., Chen F., Satomi M., Nicholson W., Kern R. 2003b; Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int J Syst Evol Microbiol 53:165–172 [CrossRef]
    [Google Scholar]
  36. Wayne L. G. 1988; International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg [A] 268:433–434
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008979-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008979-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error