sp. nov., isolated from sediment of the East China Sea Free

Abstract

Strain CN83, a Gram-negative, aerobic, rod-shaped bacterium, was isolated from sediment of the East China Sea. The isolate was catalase- and oxidase-positive and cells were motile by means of polar flagella. The DNA G+C content was 44.9 mol%. The major fatty acids were C 7 and/or iso-C 2-OH, C, C 7, C and C. 16S rRNA gene sequence analysis showed that strain CN83 belonged to the genus and had the highest sequence similarity to (98.4 %) and (97.8 %). Phylogenetic analysis revealed that strain CN83 formed a monophyletic clade adjacent to the type strain of . The DNA–DNA hybridization values of strain CN83 with DSM 13756 and DSM 19270 were 44.6 and 25.5 %, respectively. On the basis of the phenotypic and genotypic data, strain CN83 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CN83 (=CGMCC 1.7062=JCM 15146).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008698-0
2009-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/8/2099.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008698-0&mimeType=html&fmt=ahah

References

  1. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  3. Euzéby, J. P.(1997). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47, 590–592.[CrossRef] [Google Scholar]
  4. Farmer, J. J., III & Hickman-Brenner, F. W.(2006). The genera Vibrio and Photobacterium. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 6, pp. 508–563. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  5. Farmer, J. J., III, Janda, J. M., Brenner, F. W., Cameron, D. N. & Birkhead, K. M.(2005). Genus I. Vibrio Pacini 1854, 411AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, The Proteobacteria, Part B, The Gammaproteobacteria, pp. 494–546. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  6. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  7. Huo, Y.-Y., Wang, C.-S., Yang, J.-Y., Wu, M. & Xu, X.-W.(2008).Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 58, 2885–2889.[CrossRef] [Google Scholar]
  8. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  9. Kämpfer, P., Steiof, M. & Dott, W.(1991). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef] [Google Scholar]
  10. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  11. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  12. Lawrence, J. G., Hartl, D. L. & Ochman, H.(1991). Molecular considerations in the evolution of bacterial genes. J Mol Evol 33, 241–250.[CrossRef] [Google Scholar]
  13. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  14. MacDonell, M. T. & Colwell, R. R.(1985). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6, 171–182.[CrossRef] [Google Scholar]
  15. Macián, M. C., Ludwig, W., Schleifer, K. H., Pujalte, M. J. & Garay, E.(2001a).Vibrio agarivorans sp. nov., a novel agarolytic marine bacterium. Int J Syst Evol Microbiol 51, 2031–2036.[CrossRef] [Google Scholar]
  16. Macián, M. C., Ludwig, W., Aznar, R., Grimont, P. A. D., Schleifer, K. H., Garay, E. & Pujalte, M. J.(2001b).Vibrio lentus sp. nov., isolated from Mediterranean oysters. Int J Syst Evol Microbiol 51, 1449–1456. [Google Scholar]
  17. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  18. Mellado, E., Moore, E. R., Nieto, J. J. & Ventosa, A.(1996). Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 46, 817–821.[CrossRef] [Google Scholar]
  19. Saitou, N. & Nei, M.(1987). The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  20. Shieh, W. Y., Chen, A.-L. & Chiu, H.-H.(2000).Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50, 321–329.[CrossRef] [Google Scholar]
  21. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors) 1980). Approved Lists of Bacterial Names. Int J Syst Bacteriol 30, 225–420.[CrossRef] [Google Scholar]
  22. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007). MEGA4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  23. Tanner, A. C. R., Badger, S., Lai, C.-H., Listgarten, M. A., Visconti, R. A. & Socransky, S. S.(1981).Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int J Syst Bacteriol 31, 432–445.[CrossRef] [Google Scholar]
  24. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  25. Thompson, F. L., Iida, T. & Swings, J.(2004a). Biodiversity of vibrios. Microbiol Mol Biol Rev 68, 403–431.[CrossRef] [Google Scholar]
  26. Thompson, C. C., Thompson, F. L., Vandemeulebroecke, K., Hoste, B., Dawyndt, P. & Swings, J.(2004b). Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54, 919–924.[CrossRef] [Google Scholar]
  27. Thompson, F. L., Gevers, D., Thompson, C. C., Dawyndt, P., Naser, S., Hoste, B., Munn, C. B. & Swings, J.(2005). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71, 5107–5115.[CrossRef] [Google Scholar]
  28. Urbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J. & Dunlap, P. V.(2007). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57, 2823–2829.[CrossRef] [Google Scholar]
  29. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  30. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M.(2007).Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef] [Google Scholar]
  31. Yamamoto, S. & Harayama, S.(1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109. [Google Scholar]
  32. Yamamoto, S. & Harayama, S.(1998). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48, 813–819.[CrossRef] [Google Scholar]
  33. ZoBell, C. E.(1941). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 42–75. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008698-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008698-0
Loading

Data & Media loading...

Supplements

Fatty acid compositions of strain CN83 ( sp. nov.) and DSM 13756 . [PDF](45 KB)

PDF

Characteristics that differentiate strain CN83 ( sp. nov.) from related species. [PDF](22 KB)

PDF

Phylogenetic tree based on 16S rRNA gene sequences using maximum-parsimony. [PDF](56 KB)

PDF

Phylogenetic tree based on 16S rRNA, , , , and gene sequences using neighbour-joining. [PDF](24 KB)

PDF

Most cited Most Cited RSS feed