1887

Abstract

and were reclassified based on their 16S rRNA and gene sequences, DNA–DNA hybridization, fatty acid methyl esters and other taxonomic characteristics. Phylogenetic analysis based on 16S rRNA and gene sequences indicated that strains of and were members of the genus , with over 90.4 % and 70.3 % sequence similarity, respectively. Their DNA G+C contents were 54.5–56.8 mol%. The DNA–DNA relatedness values of VKPM B-7517 with KNP414 and CGMCC 1.236 were 89.2 % and 88.7 %, respectively. The major isoprenoid quinone of and was MK-7 (94.1–95.7 %). The peptidoglycan type was A1 (-diaminopimelic acid) and the major polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C, C 11 and C. Phenotypic features and fatty acid profiles supported the similarity of and to CCTCC 95016 and confirmed their relationship with members of the genus . Therefore, it is proposed that and be transferred to the genus as comb. nov. (type strain HSCC 1605=VKPM B-7519=VKM B-1480D=CIP 105815=KCTC 3870) and comb. nov. (type strain VKPM B-7517=DSM 12974=CIP 105814), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008532-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/8.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008532-0&mimeType=html&fmt=ahah

References

  1. Achouak W., Normand P., Heulin T. 1999; Comparative phylogeny of rrs and nifH genes in the Bacillaceae . Int J Syst Bacteriol 49:961–967 [CrossRef]
    [Google Scholar]
  2. Aleksandrov V. G., Blagodyr R. N., Ilev I. P. 1967; Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z (Kiev) 29:111–114
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  4. Avakyan Z. A., Pivovarova T. A., Karavaiko G. I. 1986; Characteristics of a new Bacillus mucilaginosus species. Mikrobiologiia 55:477–482 (in Russian
    [Google Scholar]
  5. Avakyan Z. A., Pivovarova T. A., Karavaiko G. I. 1988; Bacillus mucilaginosus sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 66. Int J Syst Bacteriol 48:631–632
    [Google Scholar]
  6. Chou J. H., Lee J. H., Lin M. C., Chang P. S., Arun A. B., Young C. C., Chen W. M. 2009; Paenibacillus contaminans sp. nov., isolated from a contaminated laboratory plate. Int J Syst Evol Microbiol 59:125–129 [CrossRef]
    [Google Scholar]
  7. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol 2 pp 1105–1140 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Glick B. R. 1995; The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117 [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Martin K., Schuetze B., Augsten K., Kramer I., Stackebrandt E. 1999; Ornithinicoccus hortensis gen. nov., sp. nov., a soil actinomycete which contains l-ornithine. Int J Syst Bacteriol 49:1717–1724 [CrossRef]
    [Google Scholar]
  11. Hu X., Chen J., Guo J. 2006; Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov. and classification of ‘ Paenibacillus hongkongensis ’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786 [CrossRef]
    [Google Scholar]
  13. Liu W. X., Xu X. S., Wu X. H., Yang Q. Y., Luo Y. M., Christie P. 2006; Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140 [CrossRef]
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  15. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α ,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sanchez M. M., Fritze D., Blanco A., Sproer C., Tindall B. J., Schumann P., Kroppenstedt R. M., Diaz P., Pastor F. I. J. 2005; Paenibacillus barcinonensis sp. nov., a xylanase producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55:935–939 [CrossRef]
    [Google Scholar]
  18. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  19. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  20. Shelobolina E. S., Avakyan Z. A., Boulygina E. E., Turova T. P., Lysenko A. M., Osipov G. A., Karavaiko G. I. 1997; Description of a new species of mucilaginosus bacteria, Bacillus edaphicus sp. nov. and confirmation of the taxonomic status of Bacillus mucilaginosus Avakyan et al. 1986 based on data from phenotypic and genotypic analysis. Microbiology (English translation of Mikrobiologiia ) 66:681–689
    [Google Scholar]
  21. Shelobolina E. S., Avakyan Z. A., Boulygina E. E., Turova T. P., Lysenko A. M., Osipov G. A., Karavaiko G. I. 1998; Bacillus edaphicus sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 66. Int J Syst Bacteriol 48:631–632 [CrossRef]
    [Google Scholar]
  22. Sheng X. F., Huang W. Y., Yin Y. X. 2000; Effects of application of silicate bacteria fertilizer and its potassium release. J Nanjing Agric Univ 23:43–46 (in Chinese
    [Google Scholar]
  23. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  24. Smerda J., Sedlacek I., Pacova Z., Durnova E., Smiskova A., Havel L. 2005; Paenibacillus mendelii sp. nov., from surface sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 55:2351–2354 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Takeda M., Kamagata Y., Shinmaru S., Nishiyama T., Koizumi J. 2002; Paenibacillus koleovorans sp. nov., able to grow on the sheath of Sphaerotilus natans . Int J Syst Evol Microbiol 52:1597–1601 [CrossRef]
    [Google Scholar]
  27. Tcherpakov M., Ben-Jacob E., Gutnick D. L. 1999; Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster. Int J Syst Bacteriol 49:239–246 [CrossRef]
    [Google Scholar]
  28. Yamada S., Ohashi E., Agata N., Venkateswaran K. 1999; Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus , B. thuringiensis , B. mycoides , and B. anthracis and their application to the detection of B. cereus in rice. Appl Environ Microbiol 65:1483–1490
    [Google Scholar]
  29. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008532-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008532-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error