1887

Abstract

Extracellular peptidoglycan is commonly found in natural environments, yet little is known about its biodegradation in nature. We here describe a novel peptidoglycan-degrading bacterium, designated strain 332, isolated from mesotrophic lake water in Denmark. The strain was a Gram-negative-staining, motile rod. It had chitinase and lysozyme activities, which are relevant to peptidoglycan degradation, and was capable of utilizing several mono- and disaccharides, amino acids and organic acids. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain 332 belonged to the genus . Fatty acids of the strain included C and C, which are characteristic of the genus . The DNA G+C content of the strain was 65.3 mol%. A DNA–DNA hybridization value of 66.2 % was found between strain 332 and DSM 17581. Based on differences in physiological and biochemical characteristics, the strain is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is 332 (=DSM 21246 =LMG 24775). An emended description of is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008375-0
2009-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/9/2195.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008375-0&mimeType=html&fmt=ahah

References

  1. Benner, R. & Kaiser, K. ( 2003; ). Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol Oceanogr 48, 118–128.[CrossRef]
    [Google Scholar]
  2. Brandt, K. K., Patel, B. K. C. & Ingvorsen, K. ( 1999; ). Desulfocella halophila gen. nov., sp. nov., a halophilic fatty acid-oxidizing sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Bacteriol 49, 193–200.[CrossRef]
    [Google Scholar]
  3. Brandt, K. K., Petersen, A., Holm, P. E. & Nybroe, O. ( 2006; ). Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol Ecol 56, 281–291.[CrossRef]
    [Google Scholar]
  4. Cody, R. M. ( 1989; ). Distribution of chitinase and chitobiase in Bacillus. Curr Microbiol 19, 201–205.[CrossRef]
    [Google Scholar]
  5. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M. ( 2007; ). The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaert, A. ( 1970; ). Quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  7. Eisenstadt, E., Carlton, B. C. & Brown, B. J. ( 1994; ). Gene mutation. In Methods for General and Molecular Bacteriology, pp. 297–316. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  8. Frette, L., Johnsen, K., Jørgensen, N. O. G., Nybroe, O. & Kroer, N. ( 2004; ). Functional characteristics of culturable bacterioplankton from marine and estuarine environments. Int Microbiol 7, 219–227.
    [Google Scholar]
  9. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  10. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  11. Jeffries, C. D., Holtman, D. F. & Guse, D. G. ( 1957; ). Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 73, 590–591.
    [Google Scholar]
  12. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. & Madden, T. L. ( 2008; ). NCBI blast: a better web interface. Nucleic Acids Res 36, W5–W9.[CrossRef]
    [Google Scholar]
  13. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  14. Nagata, T., Meon, B. & Kirchman, D. L. ( 2003; ). Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr 48, 745–754.[CrossRef]
    [Google Scholar]
  15. O'Brien, M. & Colwell, R. R. ( 1987; ). A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-beta-d-glucosaminide. Appl Environ Microbiol 53, 1718–1720.
    [Google Scholar]
  16. Park, J. T. & Uehara, T. ( 2008; ). How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72, 211–227.[CrossRef]
    [Google Scholar]
  17. Pelz, O., Cifuentes, L. A., Hammer, B. T., Kelley, C. A. & Coffin, R. B. ( 1998; ). Tracing the assimilation of organic compounds using δ 13C analysis of unique amino acids in the bacterial peptidoglycan cell wall. FEMS Microbiol Ecol 25, 229–240.
    [Google Scholar]
  18. Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S. & Kida, K. ( 2003; ). Delftia tsuruhatensis sp nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53, 1479–1483.[CrossRef]
    [Google Scholar]
  19. Wang, S. L. & Chang, W. T. ( 1997; ). Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63, 380–386.
    [Google Scholar]
  20. Watson, L. P., McKee, A. E. & Merrell, B. R. ( 1980; ). Preparation of microbiological specimens for scanning electron microscopy. Scan Electron Microsc 2, 45–56.
    [Google Scholar]
  21. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  22. Wen, A., Fegan, M., Hayward, C., Chakraborty, S. & Sly, L. I. ( 1999; ). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49, 567–576.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008375-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008375-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error