1887

Abstract

Flavobacteria are emerging as an important group of organisms associated with the degradation of complex organic matter in aquatic environments. A novel Gram-reaction-negative, heterotrophic, rod-shaped, aerobic, yellow-pigmented and gliding bacterium, strain SCB36, was isolated from a protein-enriched seawater sample, collected at Scripps Pier, Southern California Bight (Eastern Pacific). Analysis of the 16S rRNA gene sequence showed that the bacterium was related to members of the genus within the family , phylum . 16S rRNA gene sequence similarity to the other species was 94.5–97.1 %. DNA–DNA relatedness between strain SCB36 and KMM 3907, its closest relative in terms of 16S rRNA gene sequence similarity, was 20 %. On the basis of the phylogenetic and phenotypic data, strain SCB36 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SCB36 (=CECT 7392 =CCUG 56098).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008334-0
2009-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/9/2180.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008334-0&mimeType=html&fmt=ahah

References

  1. Abell, G. C. J. & Bowman, J. P. ( 2005; ). Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol 53, 379–391.[CrossRef]
    [Google Scholar]
  2. Alonso, C., Warnecke, F., Amann, R. & Pernthaler, J. ( 2007; ). High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9, 1253–1266.[CrossRef]
    [Google Scholar]
  3. Arahal, D. R., Lekunberri, I., Gonzalez, J. M., Pascual, J., Pujalte, M. J., Pedros-Alio, C. & Pinhassi, J. ( 2007; ). Neptuniibacter caesariensis gen. nov., sp nov., a novel marine genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 57, 1000–1006.[CrossRef]
    [Google Scholar]
  4. Bauer, M., Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Würdemann, C. A., Quast, C., Kuhl, H. & other authors ( 2006; ). Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8, 2201–2213.[CrossRef]
    [Google Scholar]
  5. Bowman, J. P. ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868.
    [Google Scholar]
  6. Cottrell, M. T. & Kirchman, D. L. ( 2000; ). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66, 1692–1697.[CrossRef]
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  9. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  10. Giovannoni, S. J. ( 1991; ). The polymerase chain reaction. In Nucleic Acid Techniques in Bacterial Systematics, pp. 177–201. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  11. Glöckner, F. O., Fuchs, B. M. & Amann, R. ( 1999; ). Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65, 3721–3726.
    [Google Scholar]
  12. González, J. M., Fernández-Gómez, B., Fernàndez-Guerra, A., Gómez-Consarnau, L., Sánchez, O., Coll-Lladó, M., Del Campo, J., Escudero, L., Rodríguez-Martínez, R. & other authors ( 2008; ). Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 105, 8724–8729.[CrossRef]
    [Google Scholar]
  13. Kirchman, D. L. ( 2002; ). The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol 39, 91–100.
    [Google Scholar]
  14. Lau, S. C. K., Tsoi, M. M. Y., Li, X. C., Plakhotnikova, I., Dobretsov, S., Lau, K. W., Wu, M., Wong, P. K., Pawlik, J. R. & other authors ( 2005; ). Winogradskyella poriferorum sp nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int J Syst Evol Microbiol 55, 1589–1592.[CrossRef]
    [Google Scholar]
  15. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  16. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  17. Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H. & Wawer, C. ( 1998; ). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Molecular Microbial Ecology Manual, vol. 3.4.4, pp. 1–27. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer.
  18. Nedashkovskaya, O. I., Suzuki, M., Vysotski, M. V. & Mikhailov, V. V. ( 2003; ). Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum CytophagaFlavobacteriumBacteroides. Int J Syst Evol Microbiol 53, 81–85.[CrossRef]
    [Google Scholar]
  19. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Snauwaert, C., Vancanneyt, M., Swings, J., Kim, K. O., Lysenko, A. M., Rohde, M. & other authors ( 2005; ). Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 55, 49–55.[CrossRef]
    [Google Scholar]
  20. Pinhassi, J., Azam, F., Hemphälä, J., Long, R. A., Martinez, J., Zweifel, U. L. & Hagström, Å. ( 1999; ). Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquat Microb Ecol 17, 13–26.[CrossRef]
    [Google Scholar]
  21. Pinhassi, J., Sala, M. M., Havskum, H., Peters, F., Guadayol, Ò., Malits, A. & Marrasé, C. ( 2004; ). Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70, 6753–6766.[CrossRef]
    [Google Scholar]
  22. Wilson, K. ( 1994; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.2. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing & Wiley-Interscience.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008334-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008334-0
Loading

Data & Media loading...

Growth of sp. nov. SCB36 and protease activity in a seawater mesocosm enriched with protein (BSA). [PDF](221 KB)

PDF

Scanning electron micrograph of cells of sp. nov. SCB36 taken from liquid culture during the exponential growth phase (MB, 21 °C, 35 h). Cells were immobilized on a 0.2 µm pore-size polycarbonate filter. Bar, 3 µm.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error