A strictly anaerobic bacterial strain, designated XDT-1, was isolated from plant residue from a methanogenic reactor treating waste from cattle farms. Cells of the strain were Gram-negative, non-motile, non-spore-forming rods. Haemin was required for growth. The strain utilized xylan as well as various sugars including arabinose, xylose, glucose, mannose, cellobiose, raffinose, starch and pectin. The strain produced acetate, propionate and succinate from saccharides in the presence of haemin. The optimum pH for growth was approximately 7.2 and the optimum growth temperature was 30–35 °C. The strain was sensitive to bile. The major cellular fatty acids of the strain were anteiso-C and iso-C 3-OH, MK-10(H) was the major respiratory quinone and the genomic DNA G+C content was 38.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences placed the strain in the phylum . The closest phylogenetic neighbour of strain XDT-1 was NCTC 11153, with a 16S rRNA gene sequence similarity of 94.2 %. On the basis of data from the phylogenetic, physiological and chemotaxonomic analyses, strain XDT-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XDT-1 (=JCM 15093 =DSM 19988).


Article metrics loading...

Loading full text...

Full text loading...



  1. Akasaka, H., Izawa, T., Ueki, K. & Ueki, A.(2003a). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43, 149–161.[CrossRef] [Google Scholar]
  2. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y. & Ueki, K.(2003b).Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 53, 1991–1998.[CrossRef] [Google Scholar]
  3. Akasaka, H., Ueki, K. & Ueki, A.(2004). Effects of plant residue extract and cobalamin on growth and propionate production of Propionicimonas paludicola isolated from plant residue in irrigated rice field soil. Microbes Environ 19, 112–119.[CrossRef] [Google Scholar]
  4. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  5. Bakir, M. A., Kitahara, M., Sakamoto, M., Matsumoto, M. & Benno, Y.(2006a).Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56, 151–154.[CrossRef] [Google Scholar]
  6. Bakir, M. A., Kitahara, M., Sakamoto, M., Matsumoto, M. & Benno, Y.(2006b).Bacteroides dorei sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56, 1639–1643.[CrossRef] [Google Scholar]
  7. Chassard, C., Goumy, V., Leclerc, M., Del'homme, C. & Bernalier-Donadille, A.(2007). Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 61, 121–131.[CrossRef] [Google Scholar]
  8. Chassard, C., Delmas, E., Lawson, P. A. & Bernalier-Donadille, A.(2008).Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 58, 1008–1013.[CrossRef] [Google Scholar]
  9. Chouari, R., Le Paslier, D., Daegelen, P., Ginestet, P., Weissenbach, J. & Sghir, A.(2005). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7, 1104–1115.[CrossRef] [Google Scholar]
  10. Collins, T., Gerday, C. & Feller, G.(2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29, 3–23.[CrossRef] [Google Scholar]
  11. Cooper, S. W., Pfeiffer, D. G. & Tally, F. P.(1985). Evaluation of xylan fermentation for the identification of Bacteroides ovatus and Bacteroides thetaiotaomicron. J Clin Microbiol 22, 125–126. [Google Scholar]
  12. Godon, J.-J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R.(1997). Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63, 2802–2813. [Google Scholar]
  13. Hayashi, H., Abe, T., Sakamoto, M., Ohara, H., Ikemura, T., Sakka, K. & Benno, Y.(2005). Direct cloning of genes encoding novel xylanases from the human gut. Can J Microbiol 51, 251–259.[CrossRef] [Google Scholar]
  14. Hespell, R. B. & Whitehead, T. R.(1990). Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 73, 3013–3022.[CrossRef] [Google Scholar]
  15. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  16. Holdeman, L. V., Kelly, R. W. & Moore, W. E. C.(1984). Genus I. Bacteroides Castellani and Chalmers 1919, 959. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 604–631. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  17. Hopkins, M. J., Englyst, H. N., Macfarlane, S., Furrie, E., Macfarlane, G. T. & McBain, A. J.(2003). Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69, 6354–6360.[CrossRef] [Google Scholar]
  18. Hungate, R. E.(1966).The Rumen and its Microbes. New York: Academic Press.
  19. Kaku, N., Ueki, A., Fujii, H. & Ueki, K.(2000). Methanogenic activities on rice roots and plant residue and their contributions to methanogenesis in wetland rice field soil. Soil Biol Biochem 32, 2001–2010.[CrossRef] [Google Scholar]
  20. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  21. Levén, L., Eriksson, A. R. B. & Schnürer, A.(2007). Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59, 683–693.[CrossRef] [Google Scholar]
  22. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  23. Miyagawa, E., Azuma, R. & Suto, E.(1979). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25, 41–51.[CrossRef] [Google Scholar]
  24. Moore, L. V. H., Bourne, D. M. & Moore, W. E. C.(1994). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef] [Google Scholar]
  25. Nishiyama, T., Ueki, A., Kaku, N. & Ueki, K.(2009).Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59, 981–986.[CrossRef] [Google Scholar]
  26. Paster, B. J., Dewhirst, F. E., Olsen, I. & Fraser, G. J.(1994). Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related species. J Bacteriol 176, 725–732. [Google Scholar]
  27. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  28. Shah, H. N. & Collins, D. M.(1980). Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48, 75–87.[CrossRef] [Google Scholar]
  29. Shah, H. N. & Collins, D. M.(1989). Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39, 85–87.[CrossRef] [Google Scholar]
  30. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  31. Ueki, A., Matsuda, K. & Ohtsuki, C.(1986). Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32, 111–123.[CrossRef] [Google Scholar]
  32. Ueki, A., Akasaka, H., Suzuki, D. & Ueki, K.(2006a).Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56, 39–44.[CrossRef] [Google Scholar]
  33. Ueki, A., Akasaka, H., Suzuki, D., Hattori, S. & Ueki, K.(2006b).Xylanibacter oryzae gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, xylanolytic bacterium isolated from rice-plant residue in flooded rice-field soil in Japan. Int J Syst Evol Microbiol 56, 2215–2221.[CrossRef] [Google Scholar]
  34. Ueki, A., Akasaka, H., Satoh, A., Suzuki, D. & Ueki, K.(2007).Prevotella paludivivens sp. nov., a novel strictly anaerobic, Gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int J Syst Evol Microbiol 57, 1803–1809.[CrossRef] [Google Scholar]
  35. Ueki, A., Abe, K., Kaku, N., Watanabe, K. & Ueki, K.(2008).Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 58, 346–352.[CrossRef] [Google Scholar]
  36. Wedekind, K. J., Mansfield, H. R. & Montgomery, L.(1988). Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Appl Environ Microbiol 54, 1530–1535. [Google Scholar]
  37. Whitehead, T. R., Cotta, M. A., Collins, M. D., Falsen, E. & Lawson, P. A.(2005).Bacteroides coprosuis sp. nov., isolated from swine-manure storage pits. Int J Syst Evol Microbiol 55, 2515–2518.[CrossRef] [Google Scholar]
  38. Wilkins, T. D., Wagner, D. L., Veltri, B. J., Jr & Gregory, E. M.(1978). Factors affecting production of catalase by Bacteroides. J Clin Microbiol 8, 553–557. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error