A collection of eight strains, NF 1366, NF 450, NF 1101, NF 1107, NF 1123, NF 1413, CCUG 15260 and CCUG 15624, from various clinical origins, were characterized biochemically as similar to and . They differed from , which is unable to alkalinize acetate, and from , which is ONPG-positive (-galactosidase) and acidifies sucrose, fructose and lactose. Based on 16S rRNA gene sequence comparisons, this collection of strains was most closely related to the type strains of (97.3–97.5 %) and (99.1 %). Representative strain NF 1366 showed only 41.8 % DNA–DNA relatedness with DSM 12107 and only 51.9 % with DSM 19056. DNA–DNA hybridization of strains NF 450 and CCUG 15624 to strain NF 1366 was 41.7 and 74.6 %, respectively, and relatedness of these strains with DSM 19056 was 72.6 and 70.2 %. With the present information, these two strains must be classified as intermediate between and strain NF 1366. The fatty acid composition and polar lipid profile of strain NF 1366 were similar to those reported for other species. Like other chryseobacteria, strain NF 1366 exhibited a polyamine pattern with the predominant compound -homospermidine and a quinone system consisting of menaquinone MK-6 only. For this collection of clinical strains, the name sp. nov. is proposed, with NF 1366 (=CCUG 52764 =CIP 109762) as the type strain. was shown to be very similar genotypically and phenotypically to . Its polar lipid profile exhibited the major characteristics shown for recently described species and the fatty acid profile of was also very similar to those of the species. Hence, no striking genotypic or phenotypic differences could be found that could justify the classification of this species into a separate genus, and we therefore propose to reclassify in the genus as comb. nov. (type strain Chj707 =IAM 15050 =JCM 21512 =KCTC 12107 =NBRC 103027). An emended description of the genus is also proposed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J.(1996). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef] [Google Scholar]
  2. Baele, M., Baele, P., Vaneechoutte, M., Storms, V., Butaye, P., Devriese, L. A., Verschraegen, G., Gillis, M. & Haesebrouck, F.(2000). Application of tDNA-PCR for the identification of Enterococcus species. J Clin Microbiol 38, 4201–4207. [Google Scholar]
  3. Baele, M., Storms, V., Haesebrouck, F., Devriese, L. A., Gillis, M., Verschraegen, G., De Baere, T. & Vaneechoutte, M.(2001). Application and evaluation of the interlaboratory reproducibility of tRNA intergenic length polymorphism analysis (tDNA-PCR) for identification of species of the genus Streptococcus. J Clin Microbiol 39, 1436–1442.[CrossRef] [Google Scholar]
  4. Bernardet, J.-F., Nakagawa, Y. & Holmes, B.(2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef] [Google Scholar]
  5. Busse, H.-J. & Auling, G.(1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef] [Google Scholar]
  6. CLSI(2005).Performance standards for antimicrobial susceptibility testing. Approved Standard M100-S15. Wayne, PA: Clinical and Laboratory Standards Institute.
  7. Dees, S. B., Moss, C. W., Hollis, D. G. & Weaver, R. E.(1986). Chemical characterization of Flavobacterium odoratum, Flavobacterium breve, and Flavobacterium-like groups IIe, IIh, and IIf. J Clin Microbiol 23, 267–273. [Google Scholar]
  8. Gallego, V., Garcia, M. T. & Ventosa, A.(2006).Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56, 1589–1592.[CrossRef] [Google Scholar]
  9. Hamana, K. & Matsuzaki, S.(1990). Occurrence of homospermidine as a major polyamine in the authentic genus Flavobacterium. Can J Microbiol 36, 228–231.[CrossRef] [Google Scholar]
  10. Hamana, K. & Matsuzaki, S.(1991). Polyamine distributions in the FlavobacteriumCytophagaSphingobacterium complex. Can J Microbiol 37, 885–888.[CrossRef] [Google Scholar]
  11. Hamana, K., Itoh, T., Benno, Y. & Hayashi, H.(2008). Polyamine distribution profiles of new members of the phylum Bacteroidetes. J Gen Appl Microbiol 54, 229–236.[CrossRef] [Google Scholar]
  12. Hantsis-Zacharov, E. & Halpern, M.(2007).Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 57, 2344–2348.[CrossRef] [Google Scholar]
  13. Herzog, P., Winkler, I., Wolking, D., Kämpfer, P. & Lipski, A.(2008).Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58, 26–33.[CrossRef] [Google Scholar]
  14. Hugh, R. & Leifson, E.(1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66, 24–26. [Google Scholar]
  15. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  16. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J.(2003).Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef] [Google Scholar]
  17. Kämpfer, P., Avesani, V., Janssens, M., Charlier, J., De Baere, T. & Vaneechoutte, M.(2006). Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter. Int J Syst Evol Microbiol 56, 2323–2329.[CrossRef] [Google Scholar]
  18. Kim, M. K., Im, W.-T., Shin, Y. K., Lim, J. H., Kim, S.-H., Lee, B. C., Park, M.-Y., Lee, K. Y. & Lee, S.-T.(2004).Kaistella koreensis gen. nov., sp. nov., a novel member of the ChryseobacteriumBergeyellaRiemerella branch. Int J Syst Evol Microbiol 54, 2319–2324.[CrossRef] [Google Scholar]
  19. Kim, K. K., Bae, H.-S., Schumann, P. & Lee, S.-T.(2005).Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef] [Google Scholar]
  20. Kim, K. K., Lee, K. C., Oh, H.-M. & Lee, J.-S.(2008).Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58, 533–537.[CrossRef] [Google Scholar]
  21. Laffineur, K., Janssens, M., Charlier, J., Avesani, V., Wauters, G. & Delmée, M.(2002). Biochemical and susceptibility tests useful for identification of nonfermenting gram-negative rods. J Clin Microbiol 40, 1085–1087.[CrossRef] [Google Scholar]
  22. Lind, E. & Ursing, J.(1986). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94, 205–213. [Google Scholar]
  23. Martin, R., Riley, P. S., Hollis, D. G., Weaver, R. E. & Krichevsky, M. I.(1981). Characterization of some groups of gram-negative non-fermentative bacteria by the carbon source alkalinization technique. J Clin Microbiol 14, 39–47. [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  25. Quan, Z.-X., Kim, K. K., Kim, M.-K., Jin, L. & Lee, S.-T.(2007).Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57, 141–145.[CrossRef] [Google Scholar]
  26. Schreckenberger, P. C., Daneshvar, M. I., Weyant, S. R. & Hollis, D. G.(2003).Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. In Manual of Clinical Microbiology, 8th edn, pp. 749–779. Edited by P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller & R. H. Yolken. Washington, DC: American Society for Microbiology.
  27. Stolz, A., Busse, H.-J. & Kämpfer, P.(2007).Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef] [Google Scholar]
  28. Tindall, B. J.(1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  29. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B.(1994). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef] [Google Scholar]
  30. Vaneechoutte, M., Kämpfer, P., De Baere, T., Avesani, V., Janssens, M. & Wauters, G.(2007).Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int J Syst Evol Microbiol 57, 2623–2628.[CrossRef] [Google Scholar]
  31. Wauters, G., Van Bosterhaut, B., Janssens, M. & Verhaegen, J.(1998). Identification of Corynebacterium amycolatum and other nonlipophilic fermentative corynebacteria of human origin. J Clin Microbiol 36, 1430–1432. [Google Scholar]
  32. Wauters, G., Avesani, V., Laffineur, K., Charlier, J., Janssens, M., Van Bosterhaut, B. & Delmée, M.(2003).Brevibacterium lutescens sp. nov., from human and environmental samples. Int J Syst Evol Microbiol 53, 1321–1325.[CrossRef] [Google Scholar]
  33. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error