1887

Abstract

Two anaerobic, non-spore-forming, pleomorphic, Gram-negative rods, designated YIT 11840 and YIT 11841, were isolated from human faeces. The organisms were catalase-negative, produced succinic and acetic acids as end products of glucose metabolism and had DNA G+C contents of approximately 48–49 mol%. Although the phenotypic characteristics of these two strains were very similar, analysis of their 16S rRNA gene sequences showed that they are only distantly related (93.8 %), indicating that they represent two different species. A comparative sequence analysis revealed that these two species are members of the family ‘’ but are phylogenetically distant (<88 % sequence similarity) from the known genera belonging to this family, including , and . On the basis of the phylogenetic analysis and physiological tests, strains YIT 11840 and YIT 11841 represent two novel species of a new genus, for which the names gen. nov., sp. nov. (type strain YIT 11840 =JCM 14859 =DSM 19731), the type species, and sp. nov. (type strain YIT 11841 =JCM 14860 =DSM 19681) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008169-0
2009-08-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/8/1895.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008169-0&mimeType=html&fmt=ahah

References

  1. Chonan, O., Matsumoto, K. & Watanuki, M.(1995). Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59, 236–239.[CrossRef] [Google Scholar]
  2. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  3. Downes, J., Sutcliffe, I., Tanner, A. C. R. & Wade, W. G.(2005).Prevotella marshii sp. nov. and Prevotella baroniae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 55, 1551–1555.[CrossRef] [Google Scholar]
  4. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A.(2005). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef] [Google Scholar]
  5. Ezaki, T., Saidi, S. M., Liu, S. L., Hashimoto, Y., Yamamoto, H. & Yabuuchi, E.(1990). Rapid procedure to determine the DNA base composition from small amounts of gram-positive bacteria. FEMS Microbiol Lett 55, 127–130. [Google Scholar]
  6. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W. F. & Veldhuyzen van Zanten, S. J.(2006). Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol 44, 4136–4141.[CrossRef] [Google Scholar]
  8. Hayashi, H., Sakamoto, M. & Benno, Y.(2002). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46, 535–548.[CrossRef] [Google Scholar]
  9. Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S. & Benno, Y.(2007).Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57, 941–946.[CrossRef] [Google Scholar]
  10. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  11. Kassinen, A., Krogius-Kurikka, L., Mäkivuokko, H., Rinttilä, T., Paulin, L., Corander, J., Malinen, E., Apajalahti, J. & Palva, A.(2007). The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33.[CrossRef] [Google Scholar]
  12. Katsuta, A., Adachi, K., Matsuda, S., Shizuri, Y. & Kasai, K.(2005).Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55, 1851–1855.[CrossRef] [Google Scholar]
  13. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  14. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  15. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I.(2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.[CrossRef] [Google Scholar]
  16. Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X. & other authors(2008). Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105, 2117–2122.[CrossRef] [Google Scholar]
  17. Mai, V., Greenwald, B., Morris, J. G., Jr, Raufman, J. P. & Stine, O. C.(2006). Effect of bowel preparation and colonoscopy on post-procedure intestinal microbiota composition. Gut 55, 1822–1823.[CrossRef] [Google Scholar]
  18. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  19. Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R.(2008).Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58, 2716–2720.[CrossRef] [Google Scholar]
  20. Nagai, F., Morotomi, M., Sakon, H. & Tanaka, R.(2009).Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int J Syst Evol Microbiol 59, 1793–1797.[CrossRef] [Google Scholar]
  21. Page, R. D. M.(1996). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358. [Google Scholar]
  22. Pearson, W. R. & Lipman, D. J.(1985). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef] [Google Scholar]
  23. Rajilić-Stojanović, M., Smidt, H. & de Vos, W. M.(2007). Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9, 2125–2136.[CrossRef] [Google Scholar]
  24. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  25. Sakamoto, M., Suzuki, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y.(2004).Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54, 877–883.[CrossRef] [Google Scholar]
  26. Sakamoto, M., Umeda, M. & Benno, Y.(2005). Molecular analysis of human oral microbiota. J Periodontal Res 40, 277–285.[CrossRef] [Google Scholar]
  27. Sakon, H., Nagai, F., Morotomi, M. & Tanaka, R.(2008).Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58, 970–975.[CrossRef] [Google Scholar]
  28. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  30. Wang, X., Heazlewood, S. P., Krause, D. O. & Florin, T. H.(2003). Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95, 508–520.[CrossRef] [Google Scholar]
  31. Watabe, J., Benno, Y. & Mitsuoka, T.(1983). Taxonomic study of Bacteroides oralis and related organisms and proposal of Bacteroides veroralis sp. nov. Int J Syst Bacteriol 33, 57–64.[CrossRef] [Google Scholar]
  32. Willems, A. & Collins, M. D.(1995). 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int J Syst Bacteriol 45, 832–836.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.008169-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008169-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error