1887

Abstract

A yellow-pigmented, Gram-staining-negative, aerobic, non-motile, moderately thermophilic, rod-shaped bacterium, designated strain CC-HSB-11, was isolated from a coastal hot spring of Green Island (Lutao), located off Taituang, Taiwan. 16S rRNA gene sequence analysis demonstrated that it shared <94.4 % sequence similarity with species. Menaquinone with six isoprene units (MK-6) was the major respiratory quinone and iso-C, iso-C G, iso-C 3-OH, iso-C 3-OH, iso-C 3-OH and summed feature 3 (comprising iso-C 2-OH and/or C 7/) were the predominant fatty acids. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Six unidentified phospholipids and glycolipids also occurred as minor components. The DNA G+C content of strain CC-HSB-11 was 46.4±1 mol%. On the basis of 16S rRNA gene sequence similarities with other species and differentiating fatty acid compositions and other phenotypic data, strain CC-HSB-11 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CC-HSB-11 (=BCRC 17850 =KCTC 22339).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.007930-0
2009-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2738.html?itemId=/content/journal/ijsem/10.1099/ijs.0.007930-0&mimeType=html&fmt=ahah

References

  1. Bernardet, J.-F., Nakagawa, Y. & Holmes, B.(2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef] [Google Scholar]
  2. Bruns, A., Rohde, M. & Berthe-Corti, L.(2001).Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef] [Google Scholar]
  3. Chung, Y. C., Kobayashi, T., Kanai, H., Akiba, T. & Kudo, T.(1995). Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432. Appl Environ Microbiol 61, 1502–1506. [Google Scholar]
  4. Collins, M. D. & Jones, D.(1980). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48, 459–470.[CrossRef] [Google Scholar]
  5. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  6. Embley, T. M. & Wait, R.(1994). Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  7. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  8. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  9. Kluge, A. G. & Farris, J. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  10. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M.(2001).mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef] [Google Scholar]
  11. Lányí, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  12. Lee, S. D.(2007).Tamlana crocina gen nov., sp. nov., a marine bacterium of the family Flavobacteriaceae, isolated from beach sediment in Korea. Int J Syst Evol Microbiol 57, 764–769.[CrossRef] [Google Scholar]
  13. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  14. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  15. Miller, P. H., Wiggs, L. S. & Miller, J. M.(1995). Evaluation of AnaeroGen system for growth of anaerobic bacteria. J Clin Microbiol 33, 2388–2391. [Google Scholar]
  16. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, K. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  17. Reichenbach, H.(1992). The order Cytophagales. In The Prokaryotes, 2nd edn, vol. 4, pp. 3631–3675. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  18. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  19. Sasser, M.(1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16 [Google Scholar]
  20. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  22. Yoon, J.-H., Lee, M.-H., Oh, T.-K. & Park, Y.-H.(2005).Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 55, 1015–1019.[CrossRef] [Google Scholar]
  23. Yoon, J.-H., Kang, S.-J., Jung, Y.-T. & Oh, T.-K.(2008).Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 58, 1603–1607.[CrossRef] [Google Scholar]
  24. Young, C.-C., Kämpfer, P., Shen, F.-T., Lai, W.-A. & Arun, A. B.(2005).Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.007930-0
Loading
/content/journal/ijsem/10.1099/ijs.0.007930-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2738 - 2742

Polar lipid profile of sp. nov. CC-HSB-11 after separation by two-dimensional TLC. Plates were sprayed with molybdatophosphoric acid for detection of total polar lipids (a) and with α-naphthol/sulfuric acid reagent for glycolipid detection (b). DPG, Diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL, unidentified phospholipid; GL, unidentified glycolipid.



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error