gen. nov., sp. nov. and sp. nov., butyric acid-producing bacteria in the family ‘’ isolated from rat faeces Free

Abstract

Two bacterial strains, designated MT01 and MT12, isolated from rat faeces were characterized by using a polyphasic taxonomic approach that included analysis of their phenotypic and biochemical features, cellular fatty acid profiles, menaquinone profiles and phylogeny based on 16S rRNA gene sequences. The 16S rRNA gene sequence analysis showed that these strains were members of the family ‘’. The strains shared 94 % 16S rRNA gene sequence similarity with each other and were related to NCTC 10825 (86–87 % sequence similarity). The strains consisted of obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative rods. Growth of the strains was inhibited on medium containing 20 % bile. The two strains produced significant levels of butyric and isobutyric acids as end products from glucose. Although the major cellular fatty acid of these two strains and JCM 15291 was iso-C, strains MT01 and MT12 showed a higher level of iso-C (66 and 74 %, respectively) than did JCM 15291 (48 %). In addition, the ratios of iso-C to anteiso-C in whole-cell methanolysates of the two isolates were very much higher than that of JCM 15291. The major menaquinone of the isolates was MK-10. This menaquinone composition was different from those of other genera of the family ‘’, such as (predominant menaquinones: MK-11 and MK-12), (MK-9), (MK-8), (MK-9 and MK-10), (MK-9 and MK-10) and (MK-10 and MK-11). Menaquinone composition is therefore an important chemotaxonomic characteristic of these micro-organisms. Strains MT01 and MT12 have DNA G+C contents of 46 mol%. On the basis of these data, strains MT01 and MT12 represent two novel species of a novel genus, for which the names gen. nov., sp. nov. and sp. nov., respectively, are proposed. The type strains of and are MT01 (=JCM 15148 =CCUG 56610) and MT12 (=JCM 15149=CCUG 56611), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.007674-0
2009-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1748.html?itemId=/content/journal/ijsem/10.1099/ijs.0.007674-0&mimeType=html&fmt=ahah

References

  1. Brondz, I. & Olsen, I.(1991). Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter spp. J Clin Microbiol 29, 183–189. [Google Scholar]
  2. Chen, S. & Dong, X.(2005).Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55, 2257–2261.[CrossRef] [Google Scholar]
  3. Collins, M. D. & Jones, D.(1981). Distribution of isoprenoid quinone structural type in bacteria and their taxonomic implications. Microbiol Rev 45, 316–354. [Google Scholar]
  4. Collins, M. D., Love, D. N., Karjalainen, J., Kanervo, A., Forsblom, B., Willems, A., Stubbs, S., Sarkiala, E., Bailey, G. D. & other authors(1994). Phylogenetic analysis of members of the genus Porphyromonas and description of Porphyromonas cangingivalis sp. nov. and Porphyromonas cansulci sp. nov. Int J Syst Bacteriol 44, 674–679.[CrossRef] [Google Scholar]
  5. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  6. Hardham, J. M., King, K. W., Dreier, K., Wong, J., Strietzel, C., Eversole, R. R., Sfintescu, C. & Evans, R. T.(2008). Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontal disease patients. Int J Syst Evol Microbiol 58, 103–109.[CrossRef] [Google Scholar]
  7. Hofstad, T., Olsen, I., Eribe, E. R., Falsen, E., Collins, M. D. & Lawson, P. A.(2000).Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int J Syst Evol Microbiol 50, 2189–2195.[CrossRef] [Google Scholar]
  8. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  9. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  10. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  11. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  12. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors(2007).clustalw and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef] [Google Scholar]
  13. Lawson, P. A., Falsen, E., Inganäs, E., Weyant, R. S. & Collins, M. D.(2002).Dysgonomonas mossi sp. nov., from human sources. Syst Appl Microbiol 25, 194–197.[CrossRef] [Google Scholar]
  14. Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X. & other authors(2008). Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105, 2117–2122.[CrossRef] [Google Scholar]
  15. Love, D. N., Bailey, G. D., Collings, S. & Briscoe, D. A.(1992). Description of Porphyromonas circumdentaria sp. nov. and reassignment of Bacteroides salivosus (Love, Johnson, Jones, and Calverley 1987) as Porphyromonas (Shah and Collins 1988) salivosa comb. nov. Int J Syst Bacteriol 42, 434–438.[CrossRef] [Google Scholar]
  16. Love, D. N., Karjalainen, J., Kanervo, A., Forsblom, B., Sarkiala, E., Bailey, G. D., Wigney, D. I. & Jousimies-Somer, H.(1994).Porphyromonas canoris sp. nov., an asaccharolytic, black-pigmented species from the gingival sulcus of dogs. Int J Syst Bacteriol 44, 204–208.[CrossRef] [Google Scholar]
  17. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  18. Maruo, T., Sakamoto, M., Ito, C., Toda, T. & Benno, Y.(2008).Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58, 1221–1227.[CrossRef] [Google Scholar]
  19. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  20. Miyagawa, E. & Suto, T.(1980). Cellular fatty acid composition in Bacteroides oralis and Bacteroides ruminicola. J Gen Appl Microbiol 26, 331–343.[CrossRef] [Google Scholar]
  21. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  22. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  23. Sakamoto, M. & Benno, Y.(2006). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56, 1599–1605.[CrossRef] [Google Scholar]
  24. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y.(2002). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef] [Google Scholar]
  25. Sakamoto, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y.(2005).Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55, 815–819.[CrossRef] [Google Scholar]
  26. Sakamoto, M., Lan, P. T. N. & Benno, Y.(2007).Barnesiella viscericola gen. nov., sp. nov., a novel bacterium in the family Porphyromonadaceae isolated from chicken caecum. Int J Syst Evol Microbiol 57, 342–346.[CrossRef] [Google Scholar]
  27. Shah, H. N.(1992). The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn, pp. 3593–3607. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  28. Shah, H. N. & Collins, M. D.(1983). Genus Bacteroides. A chemotaxonomical perspective. J Appl Bacteriol 55, 403–416.[CrossRef] [Google Scholar]
  29. Summanen, P. H., Durmaz, B., Väisänen, M.-L., Liu, C., Molitoris, D., Eerola, E., Helander, I. M. & Finegold, S. M.(2005).Porphyromonas somerae sp. nov., a pathogen isolated from humans and distinct from Porphyromonas levii. J Clin Microbiol 43, 4455–4459.[CrossRef] [Google Scholar]
  30. Takagaki, A., Arai, D., Ishikawa, S. & Nanjo, F.(2007). Metabolism of tea catechin by rat intestinal flora. In Proceedings of the 3rd International Conference on O-CHA (Tea) Culture and Science, University of Shizuoka, Japan, 2–4 November 2007; HB-P-501.
  31. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  32. Ueki, A., Akasaka, H., Suzuki, D. & Ueki, K.(2006).Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56, 39–44.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.007674-0
Loading
/content/journal/ijsem/10.1099/ijs.0.007674-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1748 – 1753

Phenotypic characteristics of strains MT01 and MT12 and JCM 15291

Biochemical characteristics of strains MT01 and MT12 and JCM 15291

[ Single PDF file] (61 KB)



PDF

Most cited Most Cited RSS feed