Strain JW/YJL-B18, a spore-forming, sulfate-reducing bacterium, was isolated from constructed wetland sediment. Cells were curved rods, 0.7–1.2 μm in diameter and 3–7 μm long. Despite being phylogenetically a member of the Gram-type-positive phylum , cells stained Gram-negative at all growth phases. Strain JW/YJL-B18 grew at 8–39 °C, with an optimum at 32–35 °C and no growth at 4 °C or below or at 42 °C or above. The pH range for growth was 5.7–8.2, with an optimum at pH 7.0–7.3, and no growth was detected at or below pH 5.2 or at or above pH 8.4. The salinity range for growth was 0–3 % (NaCl/KCl 9 : 1). Strain JW/YJL-B18 utilized as carbon and energy sources beef extract, yeast extract, formate, succinate, lactate, pyruvate, ethanol and toluene. Fumarate, sulfate, sulfite and thiosulfate were reduced in the presence of lactate. Arsenate (V) was not used as an electron acceptor. Strain JW/YJL-B18 showed no indication of growth under autotrophic conditions. The predominant cellular fatty acids were C and C. The genomic DNA G+C content was 36.6 mol% (HPLC). 16S rRNA gene sequence analysis indicated that strain JW/YJL-B18 fell into the genus , with OREX-4 as its closest neighbour with a validly published name (97.9 % similarity). Based on molecular genetic evidence and physiological and biochemical characters including differences in the DNA G+C content, we propose to place strain JW/YJL-B18 (=DSM 17734 =ATCC BAA-1261) as the type strain of a novel species, sp. nov.


Article metrics loading...

Loading full text...

Full text loading...



  1. Campbell, L. L. & Postgate, J. R.(1965). Classification of the sporeforming sulfate-reducing bacteria. Bacteriol Rev 29, 359–363. [Google Scholar]
  2. Felsenstein, J.(2001).phylip – (phylogeny inference package), version 3.6a2.1. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  3. Friedrich, M. W.(2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184, 278–289.[CrossRef] [Google Scholar]
  4. Garrity, G. M., Bell, J. A. & Lilburn, T. G.(2004). Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology, 2nd edn, release 5.0. New York: Springer. http://www.bergeys.org/outlines/bergeysoutline_5_2004.pdf.
  5. Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C.(1985). Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31, 147–158.[CrossRef] [Google Scholar]
  6. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  7. Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J.(2005).Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9, 375–383.[CrossRef] [Google Scholar]
  8. Lee, Y.-J., Romanek, C. S., Mills, G. L., Davis, R. C. & Wiegel, J.(2006).Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetland receiving acid sulfate water. Int J Syst Evol Microbiol 56, 2089–2093.[CrossRef] [Google Scholar]
  9. Lee, Y.-J., Romanek, C. S. & Wiegel, J.(2007).Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int J Syst Evol Microbiol 57, 311–315.[CrossRef] [Google Scholar]
  10. Liu, A., Garcia-Dominguez, E., Rhine, E. D. & Young, L. Y.(2004). A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48, 323–332.[CrossRef] [Google Scholar]
  11. Ljungdahl, L. G. & Wiegel, J.(1986). Anaerobic fermentations. In Manual of Industrial Microbiology and Biotechnology, pp. 84–96. Edited by A. L. Demain & N. A. Solomon. Washington, DC: American Society for Microbiology.
  12. Malasarn, D., Saltikov, C. W., Campbell, K. M., Santini, J. M., Hering, J. G. & Newman, D. K.(2004).arrA is a reliable marker for As(V) respiration. Science 306, 455[CrossRef] [Google Scholar]
  13. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  14. Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. R. & Morel, F. M. M.(1997). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168, 380–388.[CrossRef] [Google Scholar]
  15. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F.(2006).Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef] [Google Scholar]
  16. Robertson, W. J., Bowman, J. P., Franzmann, P. D. & Mee, B. J.(2001).Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51, 133–140. [Google Scholar]
  17. Spring, S. & Rosenzweig, R. F.(2006). The genera Desulfitobacterium and Desulfosporosinus: taxonomy. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 4, pp. 771–786. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  18. Stackebrandt, E., Spröer, C., Rainey, F. A., Burghardt, J., Päuker, O. & Hippe, H.(1997). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47, 1134–1139.[CrossRef] [Google Scholar]
  19. Stackebrandt, E., Schumann, P., Schüler, E. & Hippe, H.(2003). Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. Int J Syst Evol Microbiol 53, 1439–1443.[CrossRef] [Google Scholar]
  20. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  21. Vatsurina, A., Badrutdinova, D., Schumann, P., Spring, S. & Vainshtein, M.(2008).Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. Int J Syst Evol Microbiol 58, 1228–1232.[CrossRef] [Google Scholar]
  22. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A.(1998). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982. [Google Scholar]
  23. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  24. Widdel, F. & Bak, F.(1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, vol. 4, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  25. Wiegel, J.(1981). Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31, 88[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error