Eight strains of an unknown thermotolerant species were isolated from the caecal contents of rabbits (). All strains were initially identified as belonging to the genus by means of genus-specific PCR, but none were identified using species-specific PCR for known thermophilic species. Cells were spiral shaped with bipolar unsheathed flagella, with no periplasmic fibres, and appeared coccoid after 10–12 days of incubation. Phylogenetic analyses based on 16S rRNA gene, and sequences revealed that all strains formed a robust clade that was very distinct from recognized species. 16S rRNA gene sequence pairwise comparisons of strain 150B with the type strains of other species revealed that the nearest phylogenetic neighbour was NCTC 12470, with 96.6 % similarity. The uniqueness of these rabbit isolates was confirmed by whole-cell protein electrophoresis. Taken together, these data indicate that the strains belong to a novel species for which the name sp. nov. is proposed, with 150B (=LMG 24588 =CCUG 56289) as the type strain.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bolton, F. J., Wareing, D. R. A., Skirrow, M. B. & Hutchinson, D. N.(1992). Identification and biotyping of campylobacters. In Identification Methods in Applied and Environmental Microbiology, pp. 151–161. Edited by R. G. Board, D. Jones & F. A Skinner. Oxford: Blackwell Scientific.
  2. Denis, M., Soumet, C., Rivoal, K., Ermel, G., Blivet, D., Salvat, G. & Colin, P.(1999). Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. Lett Appl Microbiol 29, 406–410.[CrossRef] [Google Scholar]
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  4. Foster, G., Holmes, B., Steigerwalt, A. G., Lawson, P. A., Thorne, P., Byrer, D. E., Ross, H. M., Xerry, J., Thompson, P. M. & Collins, M. D.(2004).Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int J Syst Evol Microbiol 54, 2369–2373.[CrossRef] [Google Scholar]
  5. Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W.(2007).Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol 57, 2636–2644.[CrossRef] [Google Scholar]
  6. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  7. Kärenlampi, R. I., Tolvanen, T. P. & Hänninen, M. L.(2004). Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol 42, 5731–5738.[CrossRef] [Google Scholar]
  8. Korczak, B. M., Stieber, R., Emler, S., Burnens, A. P., Frey, J. & Kuhnert, P.(2006). Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int J Syst Evol Microbiol 56, 937–945.[CrossRef] [Google Scholar]
  9. Lawson, A. J., Linton, D., Stanley, J. & Owen, R. J.(1997). Polymerase chain reaction detection and speciation of Campylobacter upsaliensis and C. helveticus in human faeces and comparison with culture techniques. J Appl Microbiol 83, 375–380.[CrossRef] [Google Scholar]
  10. Linton, D., Owen, R. J. & Stanley, J.(1996). Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Res Microbiol 147, 707–718.[CrossRef] [Google Scholar]
  11. Mesbah, M. & Whitman, W. B.(1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef] [Google Scholar]
  12. On, S. L. & Holmes, B.(1991a). Effect of inoculum size on the phenotypic characterization of Campylobacter species. J Clin Microbiol 29, 923–926. [Google Scholar]
  13. On, S. L. & Holmes, B.(1991b). Reproducibility of tolerance tests that are useful in the identification of campylobacteria. J Clin Microbiol 29, 1785–1788. [Google Scholar]
  14. On, S. L. & Holmes, B.(1992). Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol 30, 746–749. [Google Scholar]
  15. On, S. L., Holmes, B. & Sackin, M. J.(1996). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81, 425–432. [Google Scholar]
  16. On, S. L. W., Atabay, H. I., Correy, J. E. L., Harrington, C. S. & Vandamme, P.(1998). Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int J Syst Bacteriol 48, 195–206.[CrossRef] [Google Scholar]
  17. Pitcher, D. G., Saunders, N. A. & Owen, R. J.(1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef] [Google Scholar]
  18. Pot, B., Vandamme, P. & Kersters, K.(1994). Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics, pp. 493–521. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  19. Prescott, J. F. & Bruin-Mosch, C. W.(1981). Carriage of Campylobacter jejuni in healthy and diarrheic animals. Am J Vet Res 42, 164–165. [Google Scholar]
  20. Reynaud, A., Dromigny, E. & Courdavault, D.(1993). Méthodes d'isolement et premiers éléments de caractérisation de bactéries Campylobacter-like chez le lapin sevré. Rev Med Vet (Toulouse) 144, 317–322 (in French). [Google Scholar]
  21. Sebald, M. & Véron, M.(1963). Teneur en bases de l'ADN et classification des vibrions. Ann Inst Pasteur (Paris) 105, 897–910 (in French). [Google Scholar]
  22. Ursing, J. B., Lior, H. & Owen, R. J.(1994). Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol 44, 842–845.[CrossRef] [Google Scholar]
  23. Vandamme, P., Pot, B. & Kersters, K.(1991). Differentiation of campylobacters and campylobacter-like organisms by numerical analysis of the one-dimensional electrophoretic protein patterns. Syst Appl Microbiol 14, 57–66.[CrossRef] [Google Scholar]
  24. Vandamme, P., Dewhirst, F. E., Paster, B. J. & On, S. L. W.(2005). Genus I. Campylobacter Sebald and Véron 1963, 907AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, part C, pp. 1147–1160. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  25. Weber, A., Lembke, C. & Schäfer, R.(1982). Untersuchungen zum Vorkommen von Campylobacter jejuni bei Kaninchen, Meerschweinchen, Ratten und Mausen in der Versuchstierhaltung. Berl Munch Tierarztl Wochenschr 95, 488–489 (in German). [Google Scholar]
  26. Zanoni, R. G., Rossi, M., Giacomucci, D., Sanguinetti, V. & Manfreda, G.(2007). Occurrence and antibiotic susceptibility of Helicobacter pullorum from broiler chickens and commercial laying hens in Italy. Int J Food Microbiol 116, 168–173.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 7, pp. 1666 - 1671

Unrooted trees based on and gene sequences showing the phylogenetic relationships of eight strains of sp. nov. with related species. [PDF](515 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error