1887

Abstract

A thermophilic, anaerobic, chemolithoautotrophic bacterium (designated strain SL50) was isolated from a hydrothermal sample collected at the Mid-Atlantic Ridge from the deepest of the known World ocean hydrothermal fields, Ashadze field (1 ° 58′ 21″ N 4 ° 51′ 47″ W) at a depth of 4100 m. Cells of strain SL50 were motile, straight to bent rods with one polar flagellum, 0.5–0.6 μm in width and 3.0–3.5 μm in length. The temperature range for growth was 25–75 °C, with an optimum at 60 °C. The pH range for growth was 5.0–7.5, with an optimum at pH 6.5. Growth of strain SL50 was observed at NaCl concentrations ranging from 1.0 to 6.0 % (w/v) with an optimum at 2.5 % (w/v). The generation time under optimal growth conditions for strain SL50 was 60 min. Strain SL50 used molecular hydrogen, acetate, lactate, succinate, pyruvate and complex proteinaceous compounds as electron donors, and Fe(III), Mn(IV), nitrate or elemental sulfur as electron acceptors. The G+C content of the DNA of strain SL50 was 28.7 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of strain SL50 was JR (95.5 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is SL50 (=DSM 21529=VKPM B-10097). sp. nov. is the first described deep-sea bacterium capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor and ferric iron as electron acceptor and CO as the carbon source.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006767-0
2009-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1508.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006767-0&mimeType=html&fmt=ahah

References

  1. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M. ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, (Database issue), D169–D172.[CrossRef]
    [Google Scholar]
  2. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfide-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  3. Greene, A. C., Patel, B. K. C. & Sheehy, A. J. ( 1997; ). Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47, 505–509.[CrossRef]
    [Google Scholar]
  4. Huber, H. & Stetter, K. O. ( 2002; ). Family I. Deferribacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 465–466. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  5. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A. L. & Lovley, D. R. ( 2002; ). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron accepter. Int J Syst Evol Microbiol 52, 719–728.[CrossRef]
    [Google Scholar]
  6. Kashefi, K., Holmes, D. E., Baross, J. A. & Lovley, D. R. ( 2003; ). Thermophily in the Geobacteraceae: Geothermobacter erlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69, 2985–2993.[CrossRef]
    [Google Scholar]
  7. Miroshnichenko, M. L. & Bonch-Osmolovskaya, E. A. ( 2006; ). Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10, 85–96.[CrossRef]
    [Google Scholar]
  8. Miroshnichenko, M. L., Slobodkin, A. I., Kostrikina, N. A., L'Haridon, S., Nercessian, O., Spring, S., Stackebrandt, E., Bonch-Osmolovskaya, E. A. & Jeanthon, C. ( 2003; ). Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53, 1637–1641.[CrossRef]
    [Google Scholar]
  9. Reysenbach, A. L., Liu, Y., Banta, A. B., Beveridge, T. J., Kirshtein, J. D., Schouten, S., Tivey, M. K., Von Damm, K. & Voytek, M. A. ( 2006; ). A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447.[CrossRef]
    [Google Scholar]
  10. Slobodkin, A. I. ( 2005; ). Thermophilic microbial metal reduction. Microbiology English translation of Mikrobiologiia) 74, 501–514.[CrossRef]
    [Google Scholar]
  11. Slobodkin, A., Reysenbach, A.-L., Strutz, N., Dreier, M. & Wiegel, J. ( 1997; ). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47, 541–547.[CrossRef]
    [Google Scholar]
  12. Slobodkin, A. I., Tourova, T. P., Kuznetsov, B. B., Kostrikina, N. A., Chernyh, N. A. & Bonch-Osmolovskaya, E. A. ( 1999; ). Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing anaerobic thermophilic bacterium. Int J Syst Bacteriol 49, 1471–1478.[CrossRef]
    [Google Scholar]
  13. Slobodkin, A., Campbell, B., Cary, S. C., Bonch-Osmolovskaya, E. A. & Jeanthon, C. ( 2001; ). Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 1 °N (East Pacific Rise). FEMS Microbiol Ecol 36, 235–243.
    [Google Scholar]
  14. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53, 839–846.[CrossRef]
    [Google Scholar]
  15. Woese, C. R., Achenbach, L., Rouviere, P. & Mandelco, L. ( 1991; ). Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14, 364–371.[CrossRef]
    [Google Scholar]
  16. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  17. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I. ( 2002; ). Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006767-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006767-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error