A novel obligately anaerobic, hyperthermophilic, organotrophic archaeon, designated strain 1221n, was isolated from a hot spring of Uzon Caldera (Kamchatka Peninsula, Russia). Cells of strain 1221n were non-motile regular cocci, 0.6–1 μm in diameter. The temperature range for growth at pH 6.5 was 65–87 °C, with an optimum at 85 °C. The pH range for growth at 85 °C was 5.5–7.5, with an optimum at pH 6.5. Growth was not observed at or below 6 °C or at or above 90 °C, as well as at or below pH 5.0 and at or above pH 8.0. The isolate fermented a wide range of substrates including proteins: -keratin, albumin and gelatin. Elemental sulfur was not essential for growth, but stimulated growth. Strain 1221n synthesized 40 and 120 kDa proteinases localized on the cell envelope. The G+C content of the DNA was 44.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that strain 1221n was affiliated with the genus . The level of 16S rRNA gene sequence similarity with other species was 96.7–98.1 %, and was found to be the most closely related organism. Based on the data from the phylogenetic analysis and the physiological properties of the novel isolate, strain 1221n should be classified as representing a novel species, for which the name sp. nov. is proposed. The type strain is 1221n (=DSM 18924=VKM B-2413).


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Amend, J. P., Meyer-Dombard, D. R., Sheth, S. N., Zolotova, N. & Amend, A. C.(2003).Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch Microbiol 179, 394–401. [Google Scholar]
  3. Arai, K., Naito, S., Dang, V. B., Nagasawa, N. & Hirano, M.(1996). Crosslinking structure of keratin. VI. Number, type, and location of disulfide crosslinkages in low-sulfur protein of wool fiber and their relation to permanent set. J Appl Polym Sci 60, 169–179.[CrossRef] [Google Scholar]
  4. Bonch-Osmolovskaya, E. A., Slesarev, A. I., Miroshnichenko, M. L., Svetlichnaya, T. P. & Alekseev, V. A.(1988). Characteristics of Desulfurococcus amylolyticus sp. nov. - a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island. Microbiology (English translation of Mikrobiologiia) 57, 78–85. [Google Scholar]
  5. Bonch-Osmolovskaya, E. A., Sokolova, T. G., Kostrikina, N. A. & Zavarzin, G. A.(1990).Desulfurella acetivorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153, 151–155.[CrossRef] [Google Scholar]
  6. Cowan, D. A., Smolenski, K. A., Daniel, R. M. & Morgan, H. W.(1987). An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 degrees C. Biochem J 247, 121–133. [Google Scholar]
  7. Dib, R., Chobert, J.-M., Dalgalarrondo, M., Barbier, G. & Haertlé, T.(1998). Purification, molecular properties and specificity of a thermoactive and thermostable proteinase from Pyrococcus abyssi, strain st 549, hyperthermophilic archaea from deep-sea hydrothermal ecosystem. FEBS Lett 431, 279–284.[CrossRef] [Google Scholar]
  8. Eggen, R., Geerling, A., Watts, J. & De Vos, W. M.(1990). Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71, 17–20.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  10. Friedrich, A. B. & Antranikian, G.(1996). Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62, 2875–2882. [Google Scholar]
  11. Fusek, M., Lin, X. & Tang, J.(1990). Enzymatic properties of thermopsin. J Biol Chem 265, 1496–1501. [Google Scholar]
  12. Gonzalez, J. M., Masuchi, Y., Robb, F. T., Ammerman, J. W., Maeder, D. L., Yanagibayashi, M., Tamaoka, J. & Kato, C.(1998).Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2, 123–130.[CrossRef] [Google Scholar]
  13. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  14. Kevbrin, V. V. & Zavarzin, G. A.(1992). The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology (English translation of Mikrobiologiia) 61, 812–817. [Google Scholar]
  15. Klingeberg, M., Galunsky, B., Sjoholm, C., Kasche, V. & Antranikian, G.(1995). Purification and properties of high thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from extremely thermophilic archaeon Thermococcus stetteri. Appl Environ Microbiol 61, 3098–3104. [Google Scholar]
  16. Lin, X. & Tang, J.(1990). Purification, characterization, and gene cloning of thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius. J Biol Chem 265, 1490–1495. [Google Scholar]
  17. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  18. Miroshnichenko, M. L., Kublanov, I. V., Kostrikina, N. A., Tourova, T. P., Kolganova, T. V., Birkeland, N. K. & Bonch-Osmolovskaya, E. A.(2008).Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two novel extremely thermophilic cellulolytic anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58, 1492–1496.[CrossRef] [Google Scholar]
  19. Park, D.(2007). Genomic DNA Isolation from different biological materials. In Methods in Molecular Biology, vol. 353: Protocols for Nucleic Acid Analysis by Nonradioactive Probes, 2nd edn, pp. 3–13. Edited by E. Hilario & J. Mackay. Totowa, NJ: Humana Press.
  20. Perevalova, A. A., Svetlichny, V. A., Kublanov, I. V., Chernyh, N. A., Kostrikina, N. A., Tourova, T. P., Kuznetsov, B. B. & Bonch-Osmolovskaya, E. A.(2005).Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus. Int J Syst Evol Microbiol 55, 995–999.[CrossRef] [Google Scholar]
  21. Riessen, S. & Antranikian, G.(2001). Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5, 399–408.[CrossRef] [Google Scholar]
  22. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  23. Slobodkin, A. I. & Bonch-Osmolovskaya, E. A.(1994). Growth and formation of metabolic products by extremely thermophilic archaea of the genus Desulfurococcus in the presence and absence of elemental sulfur. Microbiology (English translation of Mikrobiologiia) 63, 552–554. [Google Scholar]
  24. Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kolganova, T. V. & Bonch-Osmolovskaya, E. A.(2002).Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52, 1961–1967.[CrossRef] [Google Scholar]
  25. Takai, K., Sugai, A., Itoh, T. & Horikoshi, K.(2000).Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50, 489–500.[CrossRef] [Google Scholar]
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  27. Trüper, H. G. & Schlegel, H. G.(1964). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30, 225–228.[CrossRef] [Google Scholar]
  28. Tsiroulnikov, K., Rezai, H., Bonch-Osmolovskaya, E., Nedkov, P., Gousterova, A., Cueff, V., Godfroy, A., Barbier, G., Métro, F. & other authors(2004). Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and Streptomyces subspecies. J Agric Food Chem 52, 6353–6360.[CrossRef] [Google Scholar]
  29. Vieille, C. & Zeikus, G. J.(2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65, 1–43.[CrossRef] [Google Scholar]
  30. Völkl, P., Markiewicz, P., Stetter, K. O. & Miller, J. H.(1994). The sequence of subtilisin-type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability. Protein Sci 3, 1329–1340.[CrossRef] [Google Scholar]
  31. Zillig, W., Stetter, K. O., Prangishvilli, D., Schäfer, W., Wunderl, S., Janekovic, D., Holz, I. & Palm, P.(1982).Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl Bakteriol Hyg Abt Orig C 3, 304–317. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error