1887

Abstract

The bacterial strain SR-1 was isolated from subsurface sediments of a uranium-contaminated site in Shiprock, New Mexico, USA. Cells are vibrioid and motile by means of a single polar flagellum. Strain SR-1 grows on sulfate, oxidizing formate, lactate and H, but not malate, and ferments pyruvate. The DNA sequences of the 16S rRNA gene and the 16S–23S internal transcribed spacer of strain SR-1 showed 99.9 and 99.4 % similarity, respectively, to those of the type strain DSM 2603. The DNA sequence of the ITS region is 300 bases in length and contains two tRNA genes (tRNA, tRNA). The partial DNA sequence of the gene showed 94.6 % amino acid sequence similarity to that of . The DNA G+C content of strain SR-1 was 62.4 mol% and it showed 72 % DNA–DNA similarity to . . DNA typing methods that target gene clusters and whole genomes revealed characteristic genomic fingerprints for strain SR-1. A small plasmid was detected by gel electrophoresis. On the basis of distinct phenotypic and genotypic characteristics, strain SR-1 represents a novel subspecies of . , for which the name subsp. subsp. nov. is proposed. The type strain is SR-1 (=JCM 15510 =LS KCTC 5649).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006668-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/880.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006668-0&mimeType=html&fmt=ahah

References

  1. Allen T. D., Kraus P. F., Lawson P. A., Drake G. R., Balkwill D. L., Tanner R. S. 2008; Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58:1313–1317 [CrossRef]
    [Google Scholar]
  2. Bozzola J. J., Russell L. D. 1999 Electron Microscopy: Principles and Techniques for Biologists , 2nd edn. Sudbury, MA: Jones and Bartlett;
    [Google Scholar]
  3. Brandis A., Thauer R. K. 1981; Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252
    [Google Scholar]
  4. Campbell L. L., Kasprzychi M. A., Postgate J. R. 1966; Desulfovibrio africanus sp. n., a new dissimilatory sulfate-reducing bacterium. J Bacteriol 92:1121–1127
    [Google Scholar]
  5. Castañeda Carrión I. N. 2001; Isolation and genetic characterization of subsurface microorganisms . MS thesis University of Oklahoma;
  6. Chang Y.-J., Peacock A. D., Long P. E., Stephen J. R., McKinley J. P., Macnaughton S. J., Hussain A. K. M. A., Saxton A. M., White D. C. 2001; Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160
    [Google Scholar]
  7. D'Auria G., Pushker R., Rodríguez-Valera F. 2006; IWoCS: Analyzing ribosomal intergenic transcribed spacers configuration and taxonomic relationships. Bioinformatics 22:527–531 [CrossRef]
    [Google Scholar]
  8. Davidova I. A., Duncan K. E., Choi O. K., Suflita J. M. 2006; Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742 [CrossRef]
    [Google Scholar]
  9. Dzierzewicz Z., Szczerba J., Weglarz L., Swiatkowska L., Jasinska D., Wilczok T. 2003; Intraspecies variability of Desulfovibrio desulfuricans strains determined by the genetic profiles. FEMS Microbiol Lett 219:69–74 [CrossRef]
    [Google Scholar]
  10. Elias D. A., Krumholz L. R., Wong D., Long P. E., Suflita J. M. 2003; Characterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings. Microb Ecol 46:83–91 [CrossRef]
    [Google Scholar]
  11. Feio M. J., Zinkevich V., Beech I. B., Llobet-Brossa E., Eaton P., Schmitt J., Guezennec J. 2004; Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 54:1747–1752 [CrossRef]
    [Google Scholar]
  12. García-Martínez J., Acinas S. G., Antón A. I., Rodríguez-Valera F. 1999; Use of the 16s–23s ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64 [CrossRef]
    [Google Scholar]
  13. Kane M. D., Poulsen L. K., Stahl D. A. 1993; Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16s rRNA sequences. Appl Environ Microbiol 59:682–686
    [Google Scholar]
  14. Krumholz L. R., Harris S. H., Tay S. T., Suflita J. M. 1999; Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp.nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. . Appl Environ Microbiol 65:2300–2306
    [Google Scholar]
  15. Loubinoux J., Valente F. M. A., Pereira I. A. C., Costa A., Grimont P. A. D., Le Faou A. E. 2002; Reclassification of the only species of the genus Desulfomonas , Desulfomonas pigra , as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol 52:1305–1308 [CrossRef]
    [Google Scholar]
  16. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [CrossRef]
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  18. Mogensen G. L., Kjeldsen K. U., Ingvorsen K. 2005; Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349 [CrossRef]
    [Google Scholar]
  19. Motamedi M., Pedersen K. 1998; Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int J Syst Bacteriol 48:311–315 [CrossRef]
    [Google Scholar]
  20. Mouttaki H., Nanny M. A., McInerney M. J. 2007; Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus . Appl Environ Microbiol 73:930–938 [CrossRef]
    [Google Scholar]
  21. Nevin K. P., Finneran K. T., Lovley D. R. 2003; Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69:3672–3675 [CrossRef]
    [Google Scholar]
  22. Peix A., Valverde A., Rivas R., Igual J. M., Ramírez-Bahena M.-H., Mateos P. F., Santa-Regina I., Rodríguez-Barrueco C., Martínez-Molina E., Velázquez E. 2007; Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P.chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp.nov., comb. nov. and P.chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57:1286–1290 [CrossRef]
    [Google Scholar]
  23. Postgate J. R. 1984 The Sulphate-reducing Bacteria. , 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  24. Postgate J. R., Campbell L. L. 1966; Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732–738
    [Google Scholar]
  25. Pukall R. 2006; DNA fingerprinting techniques applied to the identification, taxonomy and community analysis of prokaryotes. In Molecular Identification, Systematics, and Population Structure of Prokaryotes. pp. 51–82 Edited by Stackebrandt E. Berlin, Heidelberg: Springer;
    [Google Scholar]
  26. Rapp B. J., Wall J. D. 1987; Genetic transfer in Desulfovibrio desulfuricans . Proc Natl Acad Sci U S A 84:9128–9130
    [Google Scholar]
  27. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67
    [Google Scholar]
  28. Sakaguchi T., Arakaki A., Matsunaga T. 2002; Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221
    [Google Scholar]
  29. Sass H., Cypionka H. 2004; Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. Syst Appl Microbiol 27:541–548
    [Google Scholar]
  30. Schryver J. C., Brandt C. C., Pfiffner S. M., Palumbo A. V., Peacock A. D., White D. C., McKinley J. P., Long P. E. 2006; Application of nonlinear analysis methods for identifying relationships between microbial community structure and groundwater geochemistry. Microb Ecol 51:177–188 [CrossRef]
    [Google Scholar]
  31. Skyring G. W., Jones H. E. 1972; Guanine plus cytosine contents of the deoxyribonucleic acids of some sulfate-reducing bacteria: a reassessment. J Bacteriol 109:1298–1300
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  33. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  34. Dhia Thabet O. B., Fardeau L.-M., Suarez-Nuñez C., Hamdi M., Thomas P., Ollivier B., Alazard D. 2007; Desulfovibrio marinus sp. nov., a moderately halophilic sulfate-reducing bacterium isolated from marine sediments in Tunisia. Int J Syst Evol Microbiol 57:2167–2170
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  36. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  37. Wagner M., Loy A., Klein M., Lee N., Ramsing N. B., Stahl D. A., Friedrich M. W. 2005; Functional marker genes for identification of sulfate-reducing prokaryotes. Methods Enzymol 397:469–489
    [Google Scholar]
  38. Walker C. B., Stolyar S. S., Pinel N., Yen B., He Z., Zhou J., Wall J. D., Stahl D. A. 2006; Recovery of temperate Desulfovibrio vulgaris bacteriophage using a novel host strain. Environ Microbiol 8:1950–1959 [CrossRef]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  40. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol IV pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006668-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error