1887

Abstract

The bacterial strain SR-1 was isolated from subsurface sediments of a uranium-contaminated site in Shiprock, New Mexico, USA. Cells are vibrioid and motile by means of a single polar flagellum. Strain SR-1 grows on sulfate, oxidizing formate, lactate and H, but not malate, and ferments pyruvate. The DNA sequences of the 16S rRNA gene and the 16S–23S internal transcribed spacer of strain SR-1 showed 99.9 and 99.4 % similarity, respectively, to those of the type strain DSM 2603. The DNA sequence of the ITS region is 300 bases in length and contains two tRNA genes (tRNA, tRNA). The partial DNA sequence of the gene showed 94.6 % amino acid sequence similarity to that of . The DNA G+C content of strain SR-1 was 62.4 mol% and it showed 72 % DNA–DNA similarity to . . DNA typing methods that target gene clusters and whole genomes revealed characteristic genomic fingerprints for strain SR-1. A small plasmid was detected by gel electrophoresis. On the basis of distinct phenotypic and genotypic characteristics, strain SR-1 represents a novel subspecies of . , for which the name subsp. subsp. nov. is proposed. The type strain is SR-1 (=JCM 15510 =LS KCTC 5649).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006668-0
2010-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/880.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006668-0&mimeType=html&fmt=ahah

References

  1. Allen, T. D., Kraus, P. F., Lawson, P. A., Drake, G. R., Balkwill,D. L. & Tanner, R. S. ( 2008; ). Desulfovibriocarbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducingbacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58, 1313–1317.[CrossRef]
    [Google Scholar]
  2. Bozzola, J. J. & Russell, L. D. ( 1999; ). Electron Microscopy: Principles and Techniques for Biologists.2nd edn. Sudbury, MA: Jones and Bartlett.
  3. Brandis, A. & Thauer, R. K. ( 1981; ). Growth of Desulfovibrio species on hydrogen and sulphate assole energy source. J Gen Microbiol 126, 249–252.
    [Google Scholar]
  4. Campbell, L. L., Kasprzychi, M. A. & Postgate, J. R. ( 1966; ). Desulfovibrio africanus sp. n., a new dissimilatorysulfate-reducing bacterium. J Bacteriol 92, 1121–1127.
    [Google Scholar]
  5. Castañeda Carrión, I. N. ( 2001; ). Isolation and genetic characterization of subsurface microorganisms. MS thesis, University of Oklahoma.
  6. Chang, Y.-J., Peacock, A. D., Long, P. E., Stephen, J. R., McKinley,J. P., Macnaughton, S. J., Hussain, A. K. M. A., Saxton, A. M. & White,D. C. ( 2001; ). Diversity and characterization of sulfate-reducingbacteria in groundwater at a uranium mill tailings site. Appl EnvironMicrobiol 67, 3149–3160.
    [Google Scholar]
  7. D'Auria, G., Pushker, R. & Rodríguez-Valera,F. ( 2006; ). IWoCS: Analyzing ribosomal intergenic transcribedspacers configuration and taxonomic relationships. Bioinformatics 22, 527–531.[CrossRef]
    [Google Scholar]
  8. Davidova, I. A., Duncan, K. E., Choi, O. K. & Suflita, J.M. ( 2006; ). Desulfoglaeba alkanexedens gen.nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56, 2737–2742.[CrossRef]
    [Google Scholar]
  9. Dzierzewicz, Z., Szczerba, J., Weglarz, L., Swiatkowska, L.,Jasinska, D. & Wilczok, T. ( 2003; ). Intraspeciesvariability of Desulfovibrio desulfuricans strains determined bythe genetic profiles. FEMS Microbiol Lett 219, 69–74.[CrossRef]
    [Google Scholar]
  10. Elias, D. A., Krumholz, L. R., Wong, D., Long, P. E. & Suflita,J. M. ( 2003; ). Characterization of microbial activitiesand U reduction in a shallow aquifer contaminated by uranium mill tailings. Microb Ecol 46, 83–91.[CrossRef]
    [Google Scholar]
  11. Feio, M. J., Zinkevich, V., Beech, I. B., Llobet-Brossa, E.,Eaton, P., Schmitt, J. & Guezennec, J. ( 2004; ). Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium froma soured oil reservoir. Int J Syst Evol Microbiol 54, 1747–1752.[CrossRef]
    [Google Scholar]
  12. García-Martínez, J., Acinas, S. G., Antón,A. I. & Rodríguez-Valera, F. ( 1999; ). Useof the 16s–23s ribosomal genes spacer region in studies of prokaryoticdiversity. J Microbiol Methods 36, 55–64.[CrossRef]
    [Google Scholar]
  13. Kane, M. D., Poulsen, L. K. & Stahl, D. A. ( 1993; ). Monitoring the enrichment and isolation of sulfate-reducingbacteria by using oligonucleotide hybridization probes designed from environmentallyderived 16s rRNA sequences. Appl Environ Microbiol 59, 682–686.
    [Google Scholar]
  14. Krumholz, L. R., Harris, S. H., Tay, S. T. & Suflita, J.M. ( 1999; ). Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65, 2300–2306.
    [Google Scholar]
  15. Loubinoux, J., Valente, F. M. A., Pereira, I. A. C., Costa,A., Grimont, P. A. D. & Le Faou, A. E. ( 2002; ).Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol 52, 1305–1308.[CrossRef]
    [Google Scholar]
  16. Lowe, T. M. & Eddy, S. R. ( 1997; ).tRNAscan-SE: A program for improved detection of transfer RNA genes in genomicsequence. Nucleic Acids Res 25, 955–964.[CrossRef]
    [Google Scholar]
  17. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H.,Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  18. Mogensen, G. L., Kjeldsen, K. U. & Ingvorsen, K. ( 2005; ). Desulfovibrio aerotolerans sp. nov., anoxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 11, 339–349.[CrossRef]
    [Google Scholar]
  19. Motamedi, M. & Pedersen, K. ( 1998; ). Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducingbacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int J Syst Bacteriol 48, 311–315.[CrossRef]
    [Google Scholar]
  20. Mouttaki, H., Nanny, M. A. & McInerney, M. J. ( 2007; ). Cyclohexane carboxylate and benzoate formation from crotonatein Syntrophus aciditrophicus. Appl Environ Microbiol 73, 930–938.[CrossRef]
    [Google Scholar]
  21. Nevin, K. P., Finneran, K. T. & Lovley, D. R. ( 2003; ). Microorganisms associated with uranium bioremediation ina high-salinity subsurface sediment. Appl Environ Microbiol 69, 3672–3675.[CrossRef]
    [Google Scholar]
  22. Peix, A., Valverde, A., Rivas, R., Igual, J. M., Ramírez-Bahena,M.-H., Mateos, P. F., Santa-Regina, I., Rodríguez-Barrueco, C., Martínez-Molina,E. & Velázquez, E. ( 2007; ). Reclassificationof Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57, 1286–1290.[CrossRef]
    [Google Scholar]
  23. Postgate, J. R. ( 1984; ). The Sulphate-reducingBacteria. 2nd edn. Cambridge: Cambridge University Press.
  24. Postgate, J. R. & Campbell, L. L. ( 1966; ). Classification of Desulfovibrio species, the nonsporulatingsulfate-reducing bacteria. Bacteriol Rev 30, 732–738.
    [Google Scholar]
  25. Pukall, R. ( 2006; ). DNA fingerprintingtechniques applied to the identification, taxonomy and community analysisof prokaryotes. In Molecular Identification, Systematics, and PopulationStructure of Prokaryotes. pp. 51–82. Edited by E. Stackebrandt.Berlin, Heidelberg: Springer.
  26. Rapp, B. J. & Wall, J. D. ( 1987; ).Genetic transfer in Desulfovibrio desulfuricans. ProcNatl Acad Sci U S A 84, 9128–9130.
    [Google Scholar]
  27. Rosselló-Mora, R. & Amann, R. ( 2001; ). The species concept for prokaryotes. FEMS MicrobiolRev 25, 39–67.
    [Google Scholar]
  28. Sakaguchi, T., Arakaki, A. & Matsunaga, T. ( 2002; ). Desulfovibrio magneticus sp. nov., a novel sulfate-reducingbacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52, 215–221.
    [Google Scholar]
  29. Sass, H. & Cypionka, H. ( 2004; ).Isolation of sulfate-reducing bacteria from the terrestrial deep subsurfaceand description of Desulfovibrio cavernae sp. nov. SystAppl Microbiol 27, 541–548.
    [Google Scholar]
  30. Schryver, J. C., Brandt, C. C., Pfiffner, S. M., Palumbo, A.V., Peacock, A. D., White, D. C., McKinley, J. P. & Long, P. E. ( 2006; ). Application of nonlinear analysis methods for identifyingrelationships between microbial community structure and groundwater geochemistry. Microb Ecol 51, 177–188.[CrossRef]
    [Google Scholar]
  31. Skyring, G. W. & Jones, H. E. ( 1972; ). Guanine plus cytosine contents of the deoxyribonucleic acids of somesulfate-reducing bacteria: a reassessment. J Bacteriol 109, 1298–1300.
    [Google Scholar]
  32. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequenceanalysis in the present species definition in bacteriology. IntJ Syst Bacteriol 44, 846–849.
    [Google Scholar]
  33. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P.A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced bypulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  34. Dhia Thabet, O. B., Fardeau, L.-M., Suarez-Nuñez, C.,Hamdi, M., Thomas, P., Ollivier, B. & Alazard, D. ( 2007; ). Desulfovibrio marinus sp. nov., a moderately halophilic sulfate-reducingbacterium isolated from marine sediments in Tunisia. Int J SystEvol Microbiol 57, 2167–2170.
    [Google Scholar]
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignmentaided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  36. Versalovic, J., Schneider, M., de Bruijn, F. J. & Lupski,J. R. ( 1994; ). Genomic fingerprinting of bacteria usingrepetitive sequence-based polymerase chain reaction. Methods MolCell Biol 5, 25–40.
    [Google Scholar]
  37. Wagner, M., Loy, A., Klein, M., Lee, N., Ramsing, N. B., Stahl,D. A. & Friedrich, M. W. ( 2005; ). Functional markergenes for identification of sulfate-reducing prokaryotes. MethodsEnzymol 397, 469–489.
    [Google Scholar]
  38. Walker, C. B., Stolyar, S. S., Pinel, N., Yen, B., He, Z., Zhou,J., Wall, J. D. & Stahl, D. A. ( 2006; ). Recoveryof temperate Desulfovibrio vulgaris bacteriophage using a novel hoststrain. Environ Microbiol 8, 1950–1959.[CrossRef]
    [Google Scholar]
  39. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A.D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray,R. G. E. & other authors ( 1987; ). InternationalCommittee on Systematic Bacteriology. Report of the ad hoc committee on reconciliationof approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  40. Widdel, F. & Bak, F. ( 1992; ). Gram-negativemesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn,vol IV, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin,W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006668-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 880 - 886

Differential PFGE fingerprint patterns between strain SR-1 and . SR-1, Strain SR-1 (showing 3 I-restriction fragments); DSM, DSM 2603 (showing 6 I-restriction fragments); M, size marker.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error