1887

Abstract

During a Danish study on the prevalence of campylobacteria in pig abortions and food of animal origin, eight Gram-negative, slightly curved, rod-shaped, non-spore-forming bacteria were clustered by using amplified fragment length polymorphism analysis in a distinct phenon within the genus . In the present study, numerical analysis of whole-cell protein profiles also showed that all isolates clustered in a single group distinct from other recognized species. DNA–DNA hybridization among two representative strains exhibited a mean DNA–DNA relatedness value of 79 %. DNA–DNA hybridization with the type strains of recognized species revealed levels of DNA–DNA relatedness of 41 % or less. The DNA G+C content of the type strain was 28.5 mol%. Pairwise comparison of the 16S rRNA gene sequences with those of the type strains of established species identified (97.9 %), (97.5 %) and (97.2 %) as the nearest phylogenetic neighbours. The isolates could be distinguished from other species by means of the following biochemical tests: activities of catalase and urease, reduction of nitrate and growth on minimal medium, lack of growth at 37 °C under standardized aerobic and microaerobic conditions, in 4 % NaCl and 1 % glycine media. Finally, DNA fingerprints obtained by using enterobacterial repetitive intergenic consenus-PCR showed that the eight isolates represent eight strains of a single novel species, for which the name sp. nov. is proposed. The type strain is LMG 24486 (=CCUG 56902).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006650-0
2009-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/10/2599.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006650-0&mimeType=html&fmt=ahah

References

  1. Chinivasagam, H. N., Corney, B. G., Wright, L. L., Diallo, I. S. & Blackall, P. J. ( 2007; ). Detection of Arcobacter spp. in piggery effluent and effluent-irrigated soils in southeast Queensland. J Appl Microbiol 103, 418–426.[CrossRef]
    [Google Scholar]
  2. Collado, L., Cleenwerck, I., Van Trappen, S., De Vos, P. & Figueras, M. J. ( 2009; ). Arcobacter mytili sp. nov., an indoxyl acetate hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 59, 1391–1396.[CrossRef]
    [Google Scholar]
  3. Donachie, S. P., Bowman, J. P., On, S. L. W. & Alam, M. ( 2005; ). Arcobacter halophilus sp nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 55, 1271–1277.[CrossRef]
    [Google Scholar]
  4. Ellis, W. A., Neill, S. D., Obrien, J. J., Ferguson, H. W. & Hanna, J. ( 1977; ). Isolation of Spirillum-Vibrio-like organisms from bovine fetuses. Vet Rec 100, 451–452.[CrossRef]
    [Google Scholar]
  5. Ellis, W. A., Neill, S. D., Obrien, J. J. & Hanna, J. ( 1978; ). Isolation of spirillum-like organisms from pig fetuses. Vet Rec 102, 106
    [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Harmon, K. M. & Wesley, I. V. ( 1996; ). Identification of Arcobacter isolates by PCR. Lett Appl Microbiol 23, 241–244.[CrossRef]
    [Google Scholar]
  8. Houf, K. & Stephan, R. ( 2007; ). Isolation and characterization of the emerging foodborne pathogen Arcobacter from human stool. J Microbiol Methods 68, 408–413.[CrossRef]
    [Google Scholar]
  9. Houf, K., Tutenel, A., De Zutter, L., Van Hoof, J. & Vandamme, P. ( 2000; ). Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS Microbiol Lett 193, 89–94.[CrossRef]
    [Google Scholar]
  10. Houf, K., Devriese, L. A., De Zutter, L., Van Hoof, J. & Vandamme, P. ( 2001; ). Development of a new protocol for the isolation and quantification of Arcobacter species from poultry products. Int J Food Microbiol 71, 189–196.[CrossRef]
    [Google Scholar]
  11. Houf, K., De Zutter, L., Van Hoof, J. & Vandamme, P. ( 2002; ). Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl Environ Microbiol 68, 2172–2178.[CrossRef]
    [Google Scholar]
  12. Houf, K., De Zutter, L., Verbeke, B., Van Hoof, J. & Vandamme, P. ( 2003; ). Molecular characterization of Arcobacter isolates collected in a poultry slaughterhouse. J Food Prot 66, 364–369.
    [Google Scholar]
  13. Houf, K., On, S. L. W., Coenye, T., Mast, J., Van Hoof, J. & Vandamme, P. ( 2005; ). Arcobacter cibarius sp nov., isolated from broiler carcasses. Int J Syst Evol Microbiol 55, 713–717.[CrossRef]
    [Google Scholar]
  14. Houf, K., De Smet, S., Baré, J. & Daminet, S. ( 2008; ). Dogs as carrier of the emerging pathogen Arcobacter. Vet Microbiol 130, 208–213.[CrossRef]
    [Google Scholar]
  15. International Commission on Microbiological Specifications for Foods (ICMSF) ( 2002; ). Microorganisms in foods? In Microbiological Testing in Food Safety Management, p. 171. Kluwer/Plenum: Dordrecht/New York.
  16. Kabeya, H., Kobayashi, Y., Maruyama, S. & Mikami, T. ( 2003; ). One-step polymerase chain reaction-based typing of Arcobacter species. Int J Food Microbiol 81, 163–168.[CrossRef]
    [Google Scholar]
  17. Kalendar, R. ( 2007; ). FastPCR: a PCR primer and probe design and repeat sequence searching software with additional tools for the manipulation and analysis of DNA and protein. www.biocenter.helsinki.fi/bi/programs/fastpcr.htm.
  18. McClung, C. R., Patriquin, D. G. & Davis, R. E. ( 1983; ). Campylobacter nitrofigilis sp. nov, a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int J Syst Bacteriol 33, 605–612.[CrossRef]
    [Google Scholar]
  19. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  20. On, S. L. W., Holmes, B. & Sackin, M. J. ( 1996; ). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81, 425–432.
    [Google Scholar]
  21. On, S. L. W., Jensen, T. K., Bille-Hansen, V., Jorsal, S. E. & Vandamme, P. ( 2002; ). Prevalence and diversity of Arcobacter spp. isolated from the internal organs of spontaneous porcine abortions in Denmark. Vet Microbiol 85, 159–167.[CrossRef]
    [Google Scholar]
  22. On, S. L. W., Harrington, C. S. & Atabay, H. I. ( 2003; ). Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and turkey faeces. J Appl Microbiol 95, 1096–1105.[CrossRef]
    [Google Scholar]
  23. Petersen, R. F., Harrington, C. S., Kortegaard, H. E. & On, S. L. W. ( 2007; ). A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J Appl Microbiol 103, 2601–2615.[CrossRef]
    [Google Scholar]
  24. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  25. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics, pp. 493–521. Edited by M. Goodfellow & A. G.O'Donnell. Chichester: Wiley.
  26. Prouzet-Mauleon, V., Labadi, L., Bouges, N., Menard, A. & Megraud, F. ( 2006; ). Arcobacter butzleri: underestimated enteropathogen. Emerg Infect Dis 12, 307–309.[CrossRef]
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425
    [Google Scholar]
  28. Samie, A., Obi, C. L., Barrett, L. J., Powell, S. M. & Guerrant, R. L. ( 2007; ). Prevalence of Campylobacter species, Helicobacter pylori and Arcobacter species in stool samples from the Venda region, Limpopo, South Africa: studies using molecular diagnostic methods. J Infect 54, 558–566.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  30. Vandamme, P., Falsen, E., Rossau, R., Hoste, B., Segers, P., Tytgat, R. & De Ley, J. ( 1991; ). Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41, 88–103.[CrossRef]
    [Google Scholar]
  31. Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., Vlaes, L., Vandenborre, C., Higgins, R. & other authors ( 1992; ). Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol 42, 344–356.[CrossRef]
    [Google Scholar]
  32. Vandamme, P., Holmes, B., Bercovier, H. & Coenye, T. ( 2006; ). Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 56, 1801–1805.[CrossRef]
    [Google Scholar]
  33. Vandenberg, O., Dediste, A., Houf, K., Ibekwem, S., Souayah, H., Cadranel, S., Douat, N., Zissis, G., Butzler, J. P. & Vandamme, P. ( 2004; ). Arcobacter species in humans. Emerg Infect Dis 10, 1863–1867.[CrossRef]
    [Google Scholar]
  34. Van Driessche, E., Houf, K., Van Hoof, J., De Zutter, L. & Vandamme, P. ( 2003; ). Isolation of Arcobacter species from animal feces. FEMS Microbiol Lett 229, 243–248.[CrossRef]
    [Google Scholar]
  35. Van Driessche, E., Houf, K., Vangroenweghe, F., Nollet, N., De Zutter, L., Vandamme, P. & Van Hoof, J. ( 2004; ). Occurrence and strain diversity of Arcobacter species isolated from healthy Belgian pigs. Res Microbiol 155, 662–666.[CrossRef]
    [Google Scholar]
  36. Van Driessche, E., Houf, K., Vangroenweghe, F., De Zutter, L. & Van Hoof, J. ( 2005; ). Prevalence, enumeration and strain variation of Arcobacter species in the faeces of healthy cattle in Belgium. Vet Microbiol 105, 149–154.[CrossRef]
    [Google Scholar]
  37. Wirsen, C. O., Sievert, S. M., Cavanaugh, C. M., Molyneaux, S. J., Ahmad, A., Taylor, L. T., DeLong, E. F. & Taylor, C. D. ( 2002; ). Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68, 316–325.[CrossRef]
    [Google Scholar]
  38. Wybo, I., Breynaert, J., Lauwers, S., Lindenburg, F. & Houf, K. ( 2004; ). Isolation of Arcobacter skirrowii from a patient with chronic diarrhea. J Clin Microbiol 42, 1851–1852.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006650-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006650-0
Loading

Data & Media loading...

Supplements

Dendrogram derived from numerical analysis of whole-cell protein profiles of sp. nov. and reference strains. [PDF](54 KB)

PDF

DNA fingerprints obtained using enterobacterial repetitive intergenic consenus-PCR of sp. nov. and reference strains. [PDF](262 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error