gen. nov., sp. nov., isolated from the surface and smear water of German red smear soft cheese Free

Abstract

The phylogenetic position and physiological characters of six hitherto-unknown lactic acid bacterial isolates, which form part of the surface microbiota of German red smear soft cheese, are reported. The coccoid cells are aerotolerant, Gram-positive, catalase-negative and non-motile. The cell-wall peptidoglycan contains alanine, glutamic acid, lysine and aspartic acid and is of the A4 type (-Lys–-Asp). The sequences of the 16S rRNA, and genes of the six isolates are identical and reveal that these isolates represent an independent lineage within the radiation of the family in the phylum . Their closest phylogenetic neighbour is the lactic acid bacterium M1590/94/2, with which they share 94.9 % 16S rRNA gene sequence similarity; representatives of other genera such as , and are more distantly related. DNA–DNA hybridization studies reveal that the six isolates are members of a single species, and this is confirmed by similarities in biochemical characteristics. The six isolates were assigned four different groups by Fourier-transform infrared and randomly amplified polymorphic DNA typing. Therefore, it is formally proposed that these isolates should be classified in a single novel species of a novel genus and be named gen. nov., sp. nov. The type strain of is WCC 4188 (=DSM 19936 =CCUG 55508).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006601-0
2009-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/10/2437.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006601-0&mimeType=html&fmt=ahah

References

  1. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J.(1996). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef] [Google Scholar]
  2. Bora, N., Vancanneyt, M., Gelsomino, R., Swings, J., Brennan, N., Cogan, T. M., Larpin, S., Desmasures, N., Lechner, F. E. & other authors(2007).Agrococcus casei sp. nov., isolated from the surfaces of smear-ripened cheeses. Int J Syst Evol Microbiol 57, 92–97.[CrossRef] [Google Scholar]
  3. Brennan, N. M., Brown, R., Goodfellow, M., Ward, A. C., Beresford, T. P., Simpson, P. J., Fox, P. F. & Cogan, T. M.(2001).Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51, 843–852.[CrossRef] [Google Scholar]
  4. Brennan, N. M., Cogan, T. M., Loessner, M. & Scherer, S.(2004). Bacterial surface-ripened cheeses. In Cheese: Chemistry, Physics and Microbiology, pp. 199–225. Edited by P. F. Fox, P. L. H. McSweeney, T. M. Cogan & T. P. Guinee. London: Elsevier.
  5. Büchl, N. R., Wenning, M., Seiler, H., Mietke-Hofmann, H. & Scherer, S.(2008). Reliable identification of closely related Issatchenkia and Pichia species using artificial neural network analysis of Fourier-transform infrared spectra. Yeast 25, 787–798.[CrossRef] [Google Scholar]
  6. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  7. Collins, M. D. & Lawson, P. A.(2000). The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int J Syst Evol Microbiol 50, 365–369.[CrossRef] [Google Scholar]
  8. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  9. Drancourt, M., Roux, V., Fournier, P. E. & Raoult, D.(2004).rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol 42, 497–504.[CrossRef] [Google Scholar]
  10. Feurer, C., Irlinger, F., Spinnler, H. E., Glaser, P. & Vallaeys, T.(2004). Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods. J Appl Microbiol 97, 546–556.[CrossRef] [Google Scholar]
  11. Gavrish, E. Y., Krauzova, V. I., Potekhina, N. V., Karasev, S. G., Plotnikova, E. G., Altyntseva, O. V., Korosteleva, L. A. & Evtushenko, L. I.(2004). Three new species of brevibacteria – Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp. nov. Microbiology (English translation of Mikrobiologiia) 73, 218–225. [Google Scholar]
  12. Goerges, S., Mounier, J., Rea, M. C., Gelsomino, R., Heise, V., Beduhn, R., Cogan, T. M., Vancanneyt, M. & Scherer, S.(2008). Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl Environ Microbiol 74, 2210–2217.[CrossRef] [Google Scholar]
  13. Goh, S. H., Potter, S., Wood, J. O., Hemmingsen, S. M., Reynolds, R. P. & Chow, A. W.(1996). HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34, 818–823. [Google Scholar]
  14. Gräser, Y., Klare, I., Halle, E., Gantenberg, R., Buchholz, P., Jacobi, H. D., Presber, W. & Schönian, G.(1993). Epidemiological study of an Acinetobacter baumannii outbreak by using polymerase chain reaction fingerprinting. J Clin Microbiol 31, 2417–2420. [Google Scholar]
  15. Gregersen, T.(1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef] [Google Scholar]
  16. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A.(1996).Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef] [Google Scholar]
  17. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  18. Irlinger, F., Bimet, F., Delettre, J., Lefevre, M. & Grimont, P. A.(2005).Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. Int J Syst Evol Microbiol 55, 457–462.[CrossRef] [Google Scholar]
  19. Kümmerle, M., Scherer, S. & Seiler, H.(1998). Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64, 2207–2214. [Google Scholar]
  20. Lawson, P. A., Foster, G., Falsen, E., Ohlén, M. & Collins, M. D.(2000).Atopobacter phocae gen. nov., sp. nov., a novel bacterium isolated from common seals. Int J Syst Evol Microbiol 50, 1755–1760. [Google Scholar]
  21. Liu, J. R., Tanner, R. S., Schumann, P., Weiss, N., McKenzie, C. A., Janssen, P. H., Seviour, E. M., Lawson, P. A., Allen, T. D. & Seviour, R. J.(2002). Emended description of the genus Trichococcus, description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G+C Gram-positive bacteria. Int J Syst Evol Microbiol 52, 1113–1126.[CrossRef] [Google Scholar]
  22. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K. H.(1998). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef] [Google Scholar]
  23. MacKenzie, S. L.(1987). Gas chromatographic analysis of amino acids as the N-heptafluorbutyryl isobutyl esters. J Assoc Off Anal Chem 70, 151–160. [Google Scholar]
  24. Maoz, A., Mayr, R. & Scherer, S.(2003). Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69, 4012–4018.[CrossRef] [Google Scholar]
  25. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  26. Mounier, J., Gelsomino, R., Goerges, S., Vancanneyt, M., Vandemeulebroecke, K., Hoste, B., Scherer, S., Swings, J., Fitzgerald, G. F. & Cogan, T. M.(2005). Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 71, 6489–6500.[CrossRef] [Google Scholar]
  27. Oberreuter, H., Seiler, H. & Scherer, S.(2002). Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 52, 91–100. [Google Scholar]
  28. Schleifer, K. H.(1985). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156. [Google Scholar]
  29. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  30. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  31. Tindall, B. J.(1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef] [Google Scholar]
  32. Tindall, B. J.(1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  33. Van de Peer, Y. & De Wachter, R.(1997). Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13, 227–230. [Google Scholar]
  34. Verbarg, S., Frühling, A., Cousin, S., Brambilla, E., Gronow, S., Lünsdorf, H. & Stackebrandt, E.(2008).Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae. Curr Microbiol 56, 603–608.[CrossRef] [Google Scholar]
  35. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  36. Wenning, M., Theilmann, V. & Scherer, S.(2006). Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environ Microbiol 8, 848–857.[CrossRef] [Google Scholar]
  37. Worliczek, H. L., Kämpfer, P., Rosengarten, R., Tindall, B. J. & Busse, H. J.(2007). Polar lipid and fatty acid profiles – re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30, 355–370.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006601-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006601-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2437 - 2443

FT-IR-based similarity dendrogram for gen. nov., sp. nov. WCC 4188 and representatives of closely related genera.

FT-IR-based similarity dendrogram for the six strains of gen. nov., sp. nov., WCC 4185, WCC 4186, WCC 4187, WCC 4188 , WCC 4189 and WCC 4190, and comparison with M13 RAPD-fingerprint profiles.

Cellular fatty acid compositions of isolates WCC 4187, WCC 4188 , WCC 4189 and WCC 4190.

DNA–DNA relatedness between four strains of gen. nov., sp. nov.

[PDF file of Supplementary Figures and Tables](128 KB)



PDF

Most cited Most Cited RSS feed