Three Gram-positive, rod-shaped, oxidase-negative, non-spore-forming, non-motile bacteria (KSS-3Se, KSS-4Se and KSS-10Se) were isolated from a coolant lubricant. 16S rRNA gene sequence analyses revealed almost identical sequences, with only a few (<10 positions) differences for these three isolates. Comparisons showed the highest similarities to NCTC 11862 (97.6 % similarity with strain KSS-3Se). Similarities with other established species were lower than 97.0 %. Chemotaxonomic data studied for strain KSS-3Se [polar lipids – major compounds phosphatidylglycerol and an unknown glycolipid, moderate amounts of phosphatidylinositol and diphosphatidylglycerol; polyamines (small amounts) – major compounds spermidine and spermine; quinones – significant amounts of menaquinones MK-9(H), MK-8(H) and MK-7(H); and major fatty acids – tuberculostearic acid (10-methyl C), C and C 9] were congruent with those reported for . The strain showed differences in phenotype from . DNA–DNA hybridizations between KSS-3Se and DSM 20521 yielded a relatedness of 22.9 % (20.4 % in the reciprocal assay). From these results, it is evident that the organisms represent a novel species, for which the name sp. nov. is proposed (type strain KSS-3Se =DSM 45231 =CCUG 56567 =CCM 7546).


Article metrics loading...

Loading full text...

Full text loading...



  1. Altenburger, P., Kämpfer, P., Akimov, V. N., Lubitz, W. & Busse, H.-J.(1997). Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 47, 270–277.[CrossRef] [Google Scholar]
  2. Busse, H.-J. & Auling, G.(1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef] [Google Scholar]
  3. Chen, H.-H., Li, W.-J., Tang, S.-K., Kroppenstedt, R. M., Stackebrandt, E., Xu, L.-H. & Jiang, C.-L.(2004).Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int J Syst Evol Microbiol 54, 779–782.[CrossRef] [Google Scholar]
  4. Collins, M. D. & Cummins, C. S.(1986). Genus Corynebacterium Lehmann and Neumann 1986, 350AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1266–1283. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  5. Collins, M. D., Hoyles, L., Foster, G., Sjödén, B. & Falsen, E.(2001).Corynebacterium capitovis sp. nov., from a sheep. Int J Syst Evol Microbiol 51, 857–860.[CrossRef] [Google Scholar]
  6. Collins, M. D., Hoyles, L., Foster, G. & Falsen, E.(2004).Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica). Int J Syst Evol Microbiol 54, 925–928.[CrossRef] [Google Scholar]
  7. Fernández-Garayzábal, J. F., Collins, M. D., Hutson, R. A., González, I., Fernández, E. & Domínguez, L.(1998).Corynebacterium camporealensis sp. nov., associated with subclinical mastitis in sheep. Int J Syst Bacteriol 48, 463–468.[CrossRef] [Google Scholar]
  8. Fernández-Garayzábal, J. F., Vela, A. I., Egido, R., Hutson, R. A., Lanzarot, M. P., Fernández-García, M. & Collins, M. D.(2004).Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). Int J Syst Evol Microbiol 54, 2191–2195.[CrossRef] [Google Scholar]
  9. Fudou, R., Jojima, Y., Seto, A., Yamada, K., Kimura, E., Nakamatsu, T., Hirashi, A. & Yamanaka, S.(2002).Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol 52, 1127–1131.[CrossRef] [Google Scholar]
  10. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  11. Goyache, J., Ballesteros, C., Vela, A. I., Collins, M. D., Briones, V., Hutson, R. A., Potti, J., García-Borboroglu, P., Domínguez, L. & Fernández-Garayzábal, J. F.(2003).Corynebacterium sphenisci sp. nov., isolated from wild penguins. Int J Syst Evol Microbiol 53, 1009–1012.[CrossRef] [Google Scholar]
  12. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  13. Kämpfer, P., Steiof, M. & Dott, W.(1991). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef] [Google Scholar]
  14. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J.(2003).Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef] [Google Scholar]
  15. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  16. Moaledji, K.(1986). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5, 303–310.[CrossRef] [Google Scholar]
  17. Renaud, F. N. R., Aubel, D., Riegel, P., Meugnier, H. & Bollet, C.(2001).Corynebacterium freneyi sp. nov., α-glucosidase-positive strains related to Corynebacterium xerosis. Int J Syst Evol Microbiol 51, 1723–1728.[CrossRef] [Google Scholar]
  18. Renaud, F. N. R., Le Coustumier, A., Wilhelm, N., Aubel, D., Riegel, P., Bollet, C. & Freney, J.(2007).Corynebacterium hansenii sp. nov., an α-glucosidase-negative bacterium related to Corynebacterium xerosis. Int J Syst Evol Microbiol 57, 1113–1116.[CrossRef] [Google Scholar]
  19. Schleifer, K. H.(1985). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156. [Google Scholar]
  20. Stolz, A., Busse, H.-J. & Kämpfer, P.(2007).Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef] [Google Scholar]
  21. Tindall, B. J.(1990a). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  22. Tindall, B. J.(1990b). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef] [Google Scholar]
  23. Yanagawa, R. & Honda, E.(1978).Corynebacterium pilosum and Corynebacterium cystitidis, two new species from cows. Int J Syst Bacteriol 28, 209–216.[CrossRef] [Google Scholar]
  24. Yassin, A. F., Steiner, U. & Ludwig, W.(2002a).Corynebacterium aurimucosum sp. nov. and emended description of Corynebacterium minutissimum Collins and Jones (1983). Int J Syst Evol Microbiol 52, 1001–1005.[CrossRef] [Google Scholar]
  25. Yassin, A. F., Steiner, U. & Ludwig, W.(2002b).Corynebacterium appendicis sp. nov. Int J Syst Evol Microbiol 52, 1165–1169.[CrossRef] [Google Scholar]
  26. Yassin, A. F., Kroppenstedt, R. M. & Ludwig, W.(2003).Corynebacterium glaucum sp. nov. Int J Syst Evol Microbiol 53, 705–709.[CrossRef] [Google Scholar]
  27. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 5, pp. 1112 - 1115

Phylogenetic analysis based on 16S rRNA gene sequences available from the EMBL database showing the position of strains KSS-3Se , KSS-4Se and KSS-10Se, including an extended selection of reference sequences.

Biochemical characteristics of sp. nov. and the most similar species (on the basis of 16S rRNA gene sequence similarity) obtained with the API Coryne and API ZYM systems

[PDF file of Supplementary Fig. S1 and Supplementary Table S1](33 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error