1887

Abstract

Several strains isolated from the legume were characterized on the basis of diverse genetic, phenotypic and symbiotic approaches. These novel strains formed two groups closely related to according to their 16S rRNA gene sequences. Strains PAC48 and PAC68, designated as the type strains of these two groups, presented 99.8 and 99.1 % similarity, respectively, in their 16S rRNA gene sequences with respect to USDA 76. In spite of these high similarity values, the analysis of additional phylogenetic markers such as and genes and the 16S–23S intergenic spacer (ITS) showed that strains PAC48 and PAC68 represented two separate novel species of the genus with as their closest relative. Phenotypic differences among the novel strains isolated from and were found regarding the assimilation of carbon sources and antibiotic resistance. All these differences were congruent with DNA–DNA hybridization analysis which revealed 21 % genetic relatedness between strains PAC48 and PAC68 and 46 % and 25 %, respectively, between these strains and LMG 6134. The and genes of strains PAC48 and PAC68 were phylogenetically divergent from those of bradyrhizobia species that nodulate soybean. Soybean was not nodulated by the novel isolates. Based on the genotypic and phenotypic data obtained in this study, the new strains represent two novel species for which the names sp. nov. (type strain PAC48=LMG 24246=CECT 7396) and sp. nov. (type strain PAC68=LMG 24556=CECT 7395) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.006320-0
2009-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/8/1929.html?itemId=/content/journal/ijsem/10.1099/ijs.0.006320-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bergersen, F. J. ( 1961; ). The growth of Rhizobium in synthetic media. Aust J Biol 14, 349–360.
    [Google Scholar]
  3. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1983; ). Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14, 313–333.[CrossRef]
    [Google Scholar]
  6. Fuentes, J. B., Abe, M., Uchiumi, T., Suzuki, A. & Higashi, S. ( 2002; ). Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus). J Gen Appl Microbiol 48, 181–191.[CrossRef]
    [Google Scholar]
  7. Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51, 2037–2048.[CrossRef]
    [Google Scholar]
  8. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  9. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  10. Leidi, E. O., Sarmiento, R. & Rodriguez-Navarro, D. N. ( 2003; ). Ahipa (Pachyrhizus ahipa [Wedd.] Parodi): an alternative legume crop for sustainable production of starch, oil and protein. Ind Crops Prod 17, 27–37.[CrossRef]
    [Google Scholar]
  11. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  12. Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N., Subba-Rao, N. S., Mateos, P. F., Gillis, M., Dazzo, F. B. & Martínez-Molina, E. ( 2002; ). A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68, 5217–5222.[CrossRef]
    [Google Scholar]
  13. Rivas, R., Willems, A., Palomo, J. L., García-Benavides, P., Mateos, P. F., Martínez-Molina, E., Gillis, M. & Velázquez, E. ( 2004; ). Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 54, 1271–1275.[CrossRef]
    [Google Scholar]
  14. Rivas, R., Peix, A., Mateos, P. F., Trujillo, M. E., Martínez-Molina, E. & Velázquez, E. ( 2006; ). Biodiversity of populations of phosphate solubilizing rhizobia that nodulate chickpea in different Spanish soils. Plant Soil 287, 23–33.[CrossRef]
    [Google Scholar]
  15. Rivas, R., García-Fraile, P., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2007; ). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 44, 181–187.[CrossRef]
    [Google Scholar]
  16. Rodríguez-Navarro, D. N., Camacho, M., Leidi, E. O., Rivas, R. & Velázquez, E. ( 2004; ). Phenotypic and genotypic characterization of rhizobia from diverse geographical origin that nodulate Pachyrhizus species. Syst Appl Microbiol 27, 737–745.[CrossRef]
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 44, 406–425.
    [Google Scholar]
  18. Sørensen, M. ( 1988; ). A taxonomic revision of the genus Pachyrhizus (Fabacea–Phaseolae). Nord J Bot 8, 167–192.[CrossRef]
    [Google Scholar]
  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  20. Velázquez, E., Igual, J. M., Willems, A., Fernández, M. P., Muñoz, E., Mateos, P. F., Abril, A., Toro, N., Normand, P. & other authors ( 2001; ). Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51, 1011–1021.[CrossRef]
    [Google Scholar]
  21. Vincent, J. M. ( 1970; ). The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of Root-Nodule Bacteria, pp. 1–13. Edited by J. M. Vincent. Oxford: Blackwell Scientific Publications.
  22. Vinuesa, P., León-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Pérez-Galdona, R., Werner, D. & Martínez-Romero, E. ( 2005a; ). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55, 569–575.[CrossRef]
    [Google Scholar]
  23. Vinuesa, P., Silva, C., Werner, D. & Martínez-Romero, E. ( 2005b; ). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34, 29–54.[CrossRef]
    [Google Scholar]
  24. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  25. Willems, A., Coopman, R. & Gillis, M. ( 2001a; ). Comparison of sequence analysis of 16S–23S rDNA spacer regions, AFLP analysis, and DNA-DNA hybridizations in Bradyrhizobium. Int J Syst Evol Microbiol 51, 623–632.
    [Google Scholar]
  26. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., De Lajudie, P. & Gillis, M. ( 2001b; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  27. Willems, A., Munive, A., de Lajudie, P. & Gillis, M. ( 2003; ). In most Bradyrhizobium groups sequence comparison of 16S–23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26, 203–210.[CrossRef]
    [Google Scholar]
  28. Xu, L. M., Ge, C., Cui, Z., Li, J. & Fan, H. ( 1995; ). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45, 706–711.[CrossRef]
    [Google Scholar]
  29. Yang, Z. ( 1997; ). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 15, 555–556.
    [Google Scholar]
  30. Yao, Z. Y., Kan, F. L., Wang, E. T. & Chen, W. X. ( 2002; ). Characterization of rhizobia that nodulate legume species within the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52, 2219–2230.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.006320-0
Loading
/content/journal/ijsem/10.1099/ijs.0.006320-0
Loading

Data & Media loading...

Supplements

[ Combined file PDF] 49 KB

PDF

[ Combined file PDF] 144 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error