Two novel micro-organisms, designated strains YIT 10443 and YIT 10738, were isolated from airag, a traditional fermented mare's milk from Mongolia. The two strains were Gram-positive-staining, non-motile, asporogenous, catalase-negative, facultatively anaerobic rods of various shapes. Comparative analyses of 16S rRNA and ClpC ATPase () gene sequences and the presence of fructose-6-phosphate phosphoketolase (F6PPK) demonstrated that the novel strains were members of the genus . On the basis of 16S rRNA gene sequence similarity, the type strains of (96.6 %) and (95.7 %) were the closest neighbours of the novel strains, and DNA–DNA reassociation values with these strains were found to be lower than 15 %. The phenotypic and genotypic features demonstrated that the two strains represent a single, novel species, for which the name sp. nov. is proposed. The type strain is YIT 10443 (=JCM 15461 =DSM 21395).


Article metrics loading...

Loading full text...

Full text loading...



  1. Cavalli-Sforza, L. L. & Edwards, A. W. F.(1967). Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19, 233–257. [Google Scholar]
  2. Chao, S.-H., Tomii, Y., Sasamoto, M., Fujimoto, J., Tsai, Y.-C. & Watanabe, K.(2008).Lactobacillus capillatus sp. nov., a motile bacterium isolated from stinky tofu brine. Int J Syst Evol Microbiol 58, 2555–2559.[CrossRef] [Google Scholar]
  3. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  4. Dong, X., Xin, Y., Jian, W., Liu, X. & Ling, D.(2000).Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. Int J Syst Evol Microbiol 50, 119–125.[CrossRef] [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(2007).phylip (phylogeny inference package) version 3.67. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Finegold, S. M., Sutter, V. S. & Mathisen, G. E.(1983). Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease, pp. 3–31. Edited by D. J. Hentges. New York: Academic Press.
  9. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  10. Fuller, R.(1989). Probiotics in man and animals. J Appl Bacteriol 66, 365–378.[CrossRef] [Google Scholar]
  11. Kitajima, H., Sumida, Y., Tanaka, R., Yuki, N., Takayama, H. & Fujimura, M.(1997). Early administration of Bifidobacterium breve to preterm infants: randomized control trial. Arch Dis Child Fetal Neonatal Ed 76, F101–F107.[CrossRef] [Google Scholar]
  12. Lee, Y.-K., Nomoto, K., Salminen, S. & Gorbach, S. L.(1999). Alteration of microecology in human intestine. In Handbook of Probiotics, pp. 183–191. New York: Wiley-Interscience.
  13. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  14. Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T. & Tanaka, R.(2004). Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70, 167–173.[CrossRef] [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  16. Miyake, T., Watanabe, K., Watanabe, T. & Oyaizu, H.(1998). Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42, 661–667.[CrossRef] [Google Scholar]
  17. Moore, W. E. C. & Holdeman, V.(1974). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27, 961–979. [Google Scholar]
  18. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  19. Scardovi, V.(1986). Genus Bifidobacterium Orla-Jensen 1924, 472AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1418–1434. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  20. Scardovi, V. & Trovatelli, L. D.(1974).Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and “subtile” groups of new bifidobacteria found in sewage. Int J Syst Bacteriol 24, 21–28.[CrossRef] [Google Scholar]
  21. Scardovi, V. & Zani, G.(1974).Bifidobacterium magnum sp. nov., a large, acidophilic Bifidobacterium isolated from rabbit feces. Int J Syst Bacteriol 24, 29–34.[CrossRef] [Google Scholar]
  22. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  23. Simpson, P. J., Ross, R. P., Fitzgerald, G. F. & Stanton, C.(2004).Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol 54, 401–406.[CrossRef] [Google Scholar]
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  25. Ventura, M., Canchaya, C., Del Casale, A., Dellaglio, F., Neviani, E., Fitzgerald, G. F. & van Sinderen, D.(2006). Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 56, 2783–2792.[CrossRef] [Google Scholar]
  26. Watanabe, K., Fujimoto, J., Sasamoto, M., Dugersuren, J., Tumursuh, T. & Demberel, S.(2008). Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J Microbiol Biotechnol 24, 1313–1325.[CrossRef] [Google Scholar]
  27. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]

Data & Media loading...


RAPD-PCR fingerprinting of strains YIT 10443 (lanes 1) and YIT 10738 (lanes 2). Three primers with random sequences (A, 5′-CCGCAGCCA A-3′; B, 5′-AACGCGCAAC-3′; C, 5′-GCGGAAATAG-3′) were used. Lane M, 100 bp ladder DNA size marker (Seegene).


Phylogenetic tree based on 16S rRNA gene sequences constructed by using the maximum-likelihood method based on comparison of approximately 1460 positions. [PDF](63 KB)


Scanning electron micrographs of cells of sp. nov. YIT 10443 (a, b) and sp. nov. YIT 10738 (c, d). (a, c) Cells grown in modified GAM broth overnight at 30 °C under anaerobic conditions; (b, d) cells grown on modified GAM agar plate at 30 °C for 3 days under aerobic conditions. Bars, 1 µm.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error