1887

Abstract

Two Gram-staining-negative, rod-shaped and non-motile strains, designated CL-CB221 and CL-CB467, were isolated from a culture derived from tropical surface water of the Pacific Ocean. The 16S rRNA gene sequences of the two strains were identical, and it was found that they belonged to the class , with HAL40b as their closest relative (similarity of 96.3 %). Both strains grew optimally at 30–35 °C and pH 7–8 in the presence of 3–4 % (w/v) NaCl. The major cellular fatty acids were C 7, C 8, C and summed feature 3 (C 7 and/or iso-C 2-OH). The genomic DNA G+C contents were 57.7 and 57.8 mol%, respectively. DNA–DNA hybridization experiments revealed high values (97±2 %) for relatedness between strains CL-CB221 and CL-CB467, which suggested that these two strains belong to a single species. Based on the phylogenetic, chemotaxonomic and phenotypic data presented, it is proposed that strains CL-CB221 and CL-CB467 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CL-CB221 (=KCCM 90065 =DSM 19543).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005819-0
2009-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/9/2176.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005819-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Antunes, A., Eder, W., Fareleira, P., Santos, H. & Huber, R. ( 2003; ). Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halopholic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7, 29–34.
    [Google Scholar]
  3. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  4. Cho, K. H., Hong, S. G., Cho, H. H., Lee, Y. K., Chun, J. & Lee, H. K. ( 2008; ). Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 58, 1300–1303.[CrossRef]
    [Google Scholar]
  5. Choi, D. H., Kim, Y.-G., Hwang, C. Y., Yi, H., Chun, J. & Cho, B. C. ( 2006; ). Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56, 635–640.[CrossRef]
    [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & other authors ( 2007; ). The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  7. Englen, M. D. & Kelley, L. C. ( 2000; ). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  9. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  10. Graeber, I., Kaesler, I., Borchert, M. S., Dieckmann, R., Pape, T., Lurz, R., Nielsen, P., von Döhren, H., Michaelis, W. & other authors ( 2008; ). Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. Int J Syst Evol Microbiol 58, 585–590.[CrossRef]
    [Google Scholar]
  11. Guillard, R. R. L. & Ryther, J. H. ( 1962; ). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8, 229–239.[CrossRef]
    [Google Scholar]
  12. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  13. Jeon, Y.-S., Chung, H., Park, S., Hur, I., Lee, J.-H. & Chun, J. ( 2005; ). jphydit: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef]
    [Google Scholar]
  14. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  15. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  16. Lemos, M. L., Toranzo, A. E. & Barja, J. L. ( 1985; ). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541–1543.
    [Google Scholar]
  17. Lyman, J. & Fleming, R. H. ( 1940; ). Composition of sea water. J Mar Res 3, 134–146.
    [Google Scholar]
  18. Manaia, C. M., Nogales, B. & Nunes, O. C. ( 2003; ). Tepidiphilus margaritifer gen. nov., sp. nov., isolated from a thermophilic aerobic digester. Int J Syst Evol Microbiol 53, 1405–1410.[CrossRef]
    [Google Scholar]
  19. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  21. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  22. Rosselló-Mora, R. & Amann, R. ( 2001; ). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef]
    [Google Scholar]
  23. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  24. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  25. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  26. Swofford, D. L. ( 1998; ). paup* – Phylogenetic analysis using parsimony, version 4. Sunderland, MA: Sinauer Associates.
  27. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  28. Yumoto, I., Hirota, K., Nodasaka, Y., Yokota, Y., Hoshino, T. & Nakajima, K. ( 2004; ). Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54, 2379–2383.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005819-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005819-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2176 - 2179

Cellular fatty acid compositions of strains CL-CB221 and CL-CB467 and HAL40b . [PDF](77 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error