This investigation was based on 23 isolates from several European countries collected over the past 30 years, and included characterization of all isolates. Published data on amplified fragment length polymorphism typing of isolates representing all biovars as well as protein profiles were used to select strains that were then further characterized by polyamine profiling and sequencing of 16S rRNA, , and genes. Comparison of 16S rRNA gene sequences revealed a monophyletic group within the avian 16S rRNA group of the , which currently includes the genera , and . Five monophyletic subgroups related to were recognized by 16S rRNA, , and gene sequence comparisons. Whole-genome similarity between strains of the five subgroups and the type strain of calculated from sequences allowed us to classify them within the genus . In addition, phenotypic data including biochemical traits, protein profiling and polyamine patterns clearly indicated that these taxa are related. Major phenotypic diversity was observed for 16S rRNA gene sequence groups. Furthermore, comparison of whole-genome similarities, phenotypic data and published data on amplified fragment length polymorphism and protein profiling revealed that each of the five groups present unique properties that allow the proposal of three novel species of , for which we propose the names sp. nov. (type strain F450 =CCUG 36331 =CCM 7538), sp. nov. (type strain 52/S3/90 =CCUG 55631 =CCM 7539) and sp. nov. (type strain F150 =CCUG 15564 =CCUG 36325 =NCTC 11414), a novel genomospecies 3 of and an unnamed taxon (group V). An emended description of the genus is also presented.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Angen, Ø., Ahrens, P., Kuhnert, P., Christensen, H. & Mutters, R.(2003). Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedisHaemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. Int J Syst Evol Microbiol 53, 1449–1456.[CrossRef] [Google Scholar]
  3. Beichel, E.(1986).Differenzierung von 130 X-und V-Faktor-unabhängigen aviären Bakterienstämmen der Familie Pasteurellaceae Pohl 1981 unter besonderer Berücksichtigung neuer taxonomischer Erkenntnisse. Inaugural dissertation, Tierärztliche Hochschule Hannover, Germany (in German).
  4. Bisgaard, M.(1975). Characterization of atypical Actinobacillus lignieresii isolated from ducks with salpingitis and peritonitis. Nord Vet Med 27, 378–383. [Google Scholar]
  5. Bisgaard, M.(1982). Isolation and characterization of some previously unreported taxa from poultry with phenotypic characters related to Actinobacillus and Pasteurella species. Acta Pathol Microbiol Immunol Scand [B] 90, 59–67. [Google Scholar]
  6. Bisgaard, M.(1993). Ecology and significance of Pasteurellaceae in animals. Zentralbl Bakteriol 279, 7–26.[CrossRef] [Google Scholar]
  7. Bisgaard, M.(1995). Salpingitis in web-footed birds: prevalence, aetiology and significance. Avian Pathol 24, 443–452.[CrossRef] [Google Scholar]
  8. Bisgaard, M., Brown, D. J., Costas, M. & Ganner, M.(1993). Whole cell protein profiling of Actinobacillus-like strains classified as taxon 2 and taxon 3 according to Bisgaard. Zentralbl Bakteriol 279, 92–103.[CrossRef] [Google Scholar]
  9. Bisgaard, M., Hinz, K.-H., Petersen, K. D. & Christensen, J. P.(1999). Identification of members of the Pasteurellaceae isolated from birds and characterization of two new taxa isolated from psittacine birds. Avian Pathol 28, 369–377.[CrossRef] [Google Scholar]
  10. Bisgaard, M., Christensen, J. P., Bojesen, A. M. & Christensen, H.(2007).Avibacterium endocarditidis sp. nov., isolated from valvular endocarditis in chickens. Int J Syst Evol Microbiol 57, 1729–1734.[CrossRef] [Google Scholar]
  11. Blackall, P. J., Christensen, H., Beckenham, T., Blackall, L. L. & Bisgaard, M.(2005). Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov. Int J Syst Evol Microbiol 55, 353–362.[CrossRef] [Google Scholar]
  12. Bojesen, A. M., Christensen, H., Nielsen, S. S. & Bisgaard, M.(2007). Host-specific bacterial lineages in the taxon 2 and 3 complex of Pasteurellaceae. Syst Appl Microbiol 30, 119–127.[CrossRef] [Google Scholar]
  13. Busse, H.-J., Bunka, S., Hensel, A. & Lubitz, W.(1997). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef] [Google Scholar]
  14. Christensen, H., Bisgaard, M. & Olsen, J. E.(2002). Reclassification of equine isolates previously reported as Actinobacillus equuli, variants of A. equuli, Actinobacillus suis or Bisgaard taxon 11 and proposal of A. equuli subsp. equuli subsp. nov. and A. equuli subsp. haemolyticus subsp. nov. Int J Syst Evol Microbiol 52, 1569–1576.[CrossRef] [Google Scholar]
  15. Christensen, H., Bisgaard, M., Bojesen, A. M., Mutters, R. & Olsen, J. E.(2003a). Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. Int J Syst Evol Microbiol 53, 275–287.[CrossRef] [Google Scholar]
  16. Christensen, H., Foster, G., Christensen, J. P., Pennycott, T., Olsen, J. E. & Bisgaard, M.(2003b). Phylogenetic analysis by 16S rDNA sequence comparison of avian taxa of Bisgaard and characterization and description of two new taxa of Pasteurellaceae. J Appl Microbiol 95, 354–363.[CrossRef] [Google Scholar]
  17. Christensen, H., Kuhnert, P., Busse, H.-J., Frederiksen, W. C. & Bisgaard, M.(2007). Proposed minimal standards for the description of genera, species and subspecies of Pasteurellaceae. Int J Syst Evol Microbiol 57, 166–178.[CrossRef] [Google Scholar]
  18. De Ley, J., Mannheim, W., Mutters, R., Piechulla, K., Tytgat, R., Segers, P., Bisgaard, M., Frederiksen, W., Hinz, K.-H. & Vanhoucke, M.(1990). Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae. Int J Syst Bacteriol 40, 126–137.[CrossRef] [Google Scholar]
  19. Dewhirst, F. E., Paster, B. J., Olsen, I. & Fraser, G. J.(1993). Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences. Zentralbl Bakteriol 279, 35–44.[CrossRef] [Google Scholar]
  20. Felsenstein, J.(1995).phylip (phylogeny inference package) version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  21. Korczak, B., Christensen, H., Emler, S., Frey, J. & Kuhnert, P.(2004). Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol 54, 1393–1399.[CrossRef] [Google Scholar]
  22. Kuhnert, P. & Korczak, B. M.(2006). Prediction of whole-genome DNA–DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152, 2537–2548.[CrossRef] [Google Scholar]
  23. Kuhnert, P., Frey, J., Lang, N. P. & Mayfield, L.(2002). A phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis field strains reveals a clear species clustering. Int J Syst Evol Microbiol 52, 1391–1395.[CrossRef] [Google Scholar]
  24. Kuhnert, P., Korczak, B., Falsen, E., Straub, R., Hoops, A., Boerlin, P., Frey, J. & Mutters, R.(2004).Nicoletella semolina gen. nov., sp. nov., a new member of Pasteurellaceae isolated from horses with airway disease. J Clin Microbiol 42, 5542–5548.[CrossRef] [Google Scholar]
  25. Kuhnert, P., Korczak, B. M., Christensen, H. & Bisgaard, M.(2007). Emended description of Actinobacillus capsulatus Arseculeratne 1962, 38AL. Int J Syst Evol Microbiol 57, 625–632.[CrossRef] [Google Scholar]
  26. Olsen, G. J., Matsuda, H., Hagstrom, R. & Overbeek, R.(1994). fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10, 41–48. [Google Scholar]
  27. Piechulla, K., Bisgaard, M., Gerlach, H. & Mannheim, W.(1985). Taxonomy of some recently described avian Pasteurella/Actinobacillus-like organisms as indicated by deoxyribonucleic acid relatedness. Avian Pathol 14, 281–311.[CrossRef] [Google Scholar]
  28. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A.(editors)(1980). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef] [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  30. Zeigler, D. R.(2003). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53, 1893–1900.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 735 - 744

Strains and sequences included in the reassessment of .

Whole-genome similarity values calculated between sequences of strains investigated and related type strains of , and .

DNA–DNA reassociation results from the literature compared with whole-genome similarity values calculated from gene sequence comparisons.

Phylogenetic relationships between strains of and type species of genera of based on sequences of housekeeping genes ( , , ).

[PDF file of Supplementary Tables S1–S3 and Supplementary Fig. S1](112 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error