A combination of phylogenomic and signature sequence-based (or phenetic) approaches was used to understand the evolutionary relationships among cyanobacteria. Phylogenetic trees were constructed for 34 cyanobacteria whose genomes have been sequenced, based on concatenated sequences for 45 conserved proteins and also the 16S rRNA gene. In parallel, sequence alignments of various proteins were examined to identify conserved indels (i.e. molecular signatures or synapomorphies) that are specific for either all cyanobacteria or their various clades in the phylogenetic trees. Of the >40 molecular signatures described in this work, 15 are specific for all cyanobacteria. The other cyanobacterial clades that can now be identified and circumscribed in molecular terms by using these signatures include a deep-branching clade (clade A, corresponding to the subclass Gloeobacterophycidae), consisting of and two diazotrophic strains (JA-3-3Ab and JA2-3-B′a) (15 aa insert in EF-G); a clade comprising all other cyanobacteria except those from clade A [18 aa insert in DNA polymerase I (Pol I), 2 aa insert in the DnaX protein, 4 aa insert in TrpRS and 4–5 aa insert in tryptophan synthase beta subunit]; a clade (clade C, corresponding to the subclass Synechococcophycidae) of various marine unicellular and cyanobacteria (12 aa insert in Pol I, 3 aa insert in RpoB, 2 aa insert in KgsA, 6 aa insert in TyrRS, 2 aa insert in tRNA-mG1 transferase and 1 aa deletion in the RpoC protein); a clade of the low-B/A ecotype strains (5 aa deletion in LeuRS and 1 aa insert in the Ffh protein); a clade consisting of the species/strains (subclass Nostocophycidae; 4 aa insert in the PetA protein and 5 aa insert in the ribosomal protein S3); a clade of the order (1 aa insert in RecA); a clade comprising the orders , and [19 aa insert in DnaE, 13 aa insert in GDP–mannose pyrophosphorylase and 22–27 aa insert in NADP(H)–quinone oxidoreductase subunit D]. Two additional conserved indels in the translation-initiation factor IF-2 and riboflavin synthase alpha subunit suggest an intermediate placement of the in between the orders and . The unique presence of these molecular signatures in all available sequences from the indicated groups of cyanobacteria, but not in any other cyanobacteria (or bacteria), indicates that these synapomorphies provide novel and potentially useful means for circumscription of several important taxonomic clades of cyanobacteria in more definitive terms. The species-distribution patterns of these synapomorphies also indicate that the plant/plastid homologues are not derived from the clade A or C cyanobacteria.


Article metrics loading...

Loading full text...

Full text loading...



  1. Adams, D. G.(2000). Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3, 618–624.[CrossRef] [Google Scholar]
  2. Anagnostidis, K. & Komarek, J.(1985). Modern approaches to the classification system of Cyanophytes. 1 – Introduction. Arch Hydrobiol 38–39, 291–302. [Google Scholar]
  3. Archibald, J. M.(2006). Algal genomics: exploring the imprint of endosymbiosis. Curr Biol 16, R1033–R1035.[CrossRef] [Google Scholar]
  4. Baldauf, S. L. & Palmer, J. D.(1993). Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 90, 11558–11562.[CrossRef] [Google Scholar]
  5. Boucher, Y., Douady, C. J., Papke, R. T., Walsh, D. A., Boudreau, M. E., Nesbø, C. L., Case, R. J. & Doolittle, W. F.(2003). Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37, 283–328.[CrossRef] [Google Scholar]
  6. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J.(2001). Universal trees based on large combined protein sequence data sets. Nat Genet 28, 281–285.[CrossRef] [Google Scholar]
  7. Castenholz, R. W.(2001). Phylum BX. Cyanobacteria: oxygenic photosynthetic bacteria. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 474–487. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  8. Castresana, J.(2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.[CrossRef] [Google Scholar]
  9. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B. & Bork, P.(2006). Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287.[CrossRef] [Google Scholar]
  10. Delsuc, F., Brinkmann, H. & Philippe, H.(2005). Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6, 361–375. [Google Scholar]
  11. Delwiche, C. F., Kuhsel, M. & Palmer, J. D.(1995). Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol Phylogenet Evol 4, 110–128.[CrossRef] [Google Scholar]
  12. Deusch, O., Landan, G., Roettger, M., Gruenheit, N., Kowallik, K. V., Allen, J. F., Martin, W. & Dagan, T.(2008). Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25, 748–761.[CrossRef] [Google Scholar]
  13. Dufresne, A., Salanoubat, M., Partensky, F., Artiguenave, F., Axmann, I. M., Barbe, V., Duprat, S., Galperin, M. Y., Koonin, E. V. & other authors(2003). Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A 100, 10020–10025.[CrossRef] [Google Scholar]
  14. Dufresne, A., Ostrowski, M., Scanlan, D. J., Garczarek, L., Mazard, S., Palenik, B. P., Paulsen, I. T., de Marsac, N. T., Wincker, P. & other authors(2008). Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9, R90[CrossRef] [Google Scholar]
  15. Eisen, J. A.(1998). Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8, 163–167.[CrossRef] [Google Scholar]
  16. Felsenstein, J.(2004).Inferring Phylogenies. Sunderland, MA: Sinauer Associates.
  17. Ferris, M. J. & Palenik, B.(1998). Niche adaptation in ocean cyanobacteria. Nature 396, 226–228.[CrossRef] [Google Scholar]
  18. Gao, B. & Gupta, R. S.(2005). Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55, 2401–2412.[CrossRef] [Google Scholar]
  19. Garrity, G. M., Bell, J. A. & Lilburn, T. G.(2005). The revised road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part A, pp. 159–220. Edited by D. J. Brenner, N. R. Krieg & J. T. Staley. New York: Springer.
  20. Giovannoni, S. J., Turner, S., Olsen, G. J., Barns, S., Lane, D. J. & Pace, N. R.(1988). Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170, 3584–3592. [Google Scholar]
  21. Gray, M. W. & Doolittle, W. F.(1982). Has the endosymbiont hypothesis been proven? Microbiol Rev 46, 1–42. [Google Scholar]
  22. Griffiths, E. & Gupta, R. S.(2001). The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga– Flavobacterium–Bacteroides division. Microbiology 147, 2611–2622. [Google Scholar]
  23. Griffiths, E. & Gupta, R. S.(2007). Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology 153, 2648–2654.[CrossRef] [Google Scholar]
  24. Gugger, M. F. & Hoffmann, L.(2004). Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54, 349–357.[CrossRef] [Google Scholar]
  25. Gupta, R. S.(1998). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria and eukaryotes. Microbiol Mol Biol Rev 62, 1435–1491. [Google Scholar]
  26. Gupta, R. S.(2000). The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24, 367–402.[CrossRef] [Google Scholar]
  27. Gupta, R. S.(2001). The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4, 187–202.[CrossRef] [Google Scholar]
  28. Gupta, R. S.(2003). Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76, 173–183.[CrossRef] [Google Scholar]
  29. Gupta, R. S.(2004). The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30, 123–143.[CrossRef] [Google Scholar]
  30. Gupta, R. S. & Griffiths, E.(2006). Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14, 527–535.[CrossRef] [Google Scholar]
  31. Gupta, R. S. & Mok, A.(2007). Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol 7, 106[CrossRef] [Google Scholar]
  32. Gupta, R. S., Mukhtar, T. & Singh, B.(1999). Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol 32, 893–906.[CrossRef] [Google Scholar]
  33. Gupta, R. S., Pereira, M., Chandrasekera, C. & Johari, V.(2003). Molecular signatures in protein sequences that are characteristic of cyanobacteria and plastid homologues. Int J Syst Evol Microbiol 53, 1833–1842.[CrossRef] [Google Scholar]
  34. Hansmann, S. & Martin, W.(2000). Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol 50, 1655–1663.[CrossRef] [Google Scholar]
  35. Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R.(2003). The genetic core of the universal ancestor. Genome Res 13, 407–412.[CrossRef] [Google Scholar]
  36. Henson, B. J., Watson, L. E. & Barnum, S. R.(2002). Molecular differentiation of the heterocystous cyanobacteria, Nostoc and Anabaena, based on complete NifD sequences. Curr Microbiol 45, 161–164.[CrossRef] [Google Scholar]
  37. Hoffmann, L.(2005). Nomenclature of Cyanophyta/Cyanobacteria: roundtable on the unification of the nomenclature under the Botanical and Bacteriological Codes. Arch Hydrobiol 159, 13–29. [Google Scholar]
  38. Hoffmann, L., Komárek, J. & Kaštovský, J.(2005). System of Cyanoprokaryotes (Cyanobacteria) – state in 2004. Arch Hydrobiol 159, 95–155. [Google Scholar]
  39. Honda, D., Yokota, A. & Sugiyama, J.(1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48, 723–739.[CrossRef] [Google Scholar]
  40. Horn, M., Collingro, A., Schmitz-Esser, S., Beier, C. L., Purkhold, U., Fartmann, B., Brandt, P., Nyakatura, G. J., Droege, M. & other authors(2004). Illuminating the evolutionary history of chlamydiae. Science 304, 728–730.[CrossRef] [Google Scholar]
  41. Huang, J. & Gogarten, J. P.(2007). Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8, R99[CrossRef] [Google Scholar]
  42. Ishida, T., Watanabe, M. M., Sugiyama, J. & Yokota, A.(2001). Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201, 79–82.[CrossRef] [Google Scholar]
  43. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J.(1998). Multiple sequence alignment with clustal_x. Trends Biochem Sci 23, 403–405.[CrossRef] [Google Scholar]
  44. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M. & other authors(1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109–136.[CrossRef] [Google Scholar]
  45. Kaneko, T., Nakamura, Y., Wolk, C. P., Kuritz, T., Sasamoto, S., Watanabe, A., Iriguchi, M., Ishikawa, A., Kawashima, K. & other authors(2001). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 205–213.[CrossRef] [Google Scholar]
  46. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  47. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  48. Kondratieva, E. N., Pfennig, N. & Truper, H. G.(1992). The phototrophic prokaryotes. In The Prokaryotes, pp. 312–330. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  49. Ludwig, W. & Schleifer, K. H.(1999). Phylogeny of Bacteria beyond the 16S rRNA standard. ASM News 65, 752–757. [Google Scholar]
  50. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M.(2001). The rdp-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef] [Google Scholar]
  51. Margulis, L.(1970).Origin of Eukaryotic Cells. New Haven, CT: Yale University Press.
  52. Melo, A. M., Bandeiras, T. M. & Teixeira, M.(2004). New insights into type II NAD(P)H : quinone oxidoreductases. Microbiol Mol Biol Rev 68, 603–616.[CrossRef] [Google Scholar]
  53. Moore, L. R., Rocap, G. & Chisholm, S. W.(1998). Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467.[CrossRef] [Google Scholar]
  54. Morden, C. W., Delwiche, C. F., Kuhsel, M. & Palmer, J. D.(1992). Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28, 75–90.[CrossRef] [Google Scholar]
  55. Moustafa, A., Reyes-Prieto, A. & Bhattacharya, D.(2008). Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 3, e2205[CrossRef] [Google Scholar]
  56. Nakamura, Y., Kaneko, T., Sato, S., Ikeuchi, M., Katoh, H., Sasamoto, S., Watanabe, A., Iriguchi, M., Kawashima, K. & other authors(2002). Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9, 123–130.[CrossRef] [Google Scholar]
  57. Nakamura, Y., Kaneko, T., Sato, S., Mimuro, M., Miyashita, H., Tsuchiya, T., Sasamoto, S., Watanabe, A., Kawashima, K. & other authors(2003). Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10, 137–145.[CrossRef] [Google Scholar]
  58. Olsen, G. J. & Woese, C. R.(1993). Ribosomal RNA: a key to phylogeny. FASEB J 7, 113–123. [Google Scholar]
  59. Oren, A.(2004). A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54, 1895–1902.[CrossRef] [Google Scholar]
  60. Oren, A. & Stackebrandt, E.(2002). Prokaryote taxonomy online: challenges ahead. Nature 419, 15 [Google Scholar]
  61. Oren, A. & Tindall, B. J.(2005). Nomenclature of the cyanophyta/cyanobacteria/cyanoprokaryotes under the International Code of Nomenclature of Prokaryotes. Arch Hydrobiol 117, 39–52. [Google Scholar]
  62. Palenik, B., Brahamsha, B., Larimer, F. W., Land, M., Hauser, L., Chain, P., Lamerdin, J., Regala, W., Allen, E. E. & other authors(2003). The genome of a motile marine Synechococcus. Nature 424, 1037–1042.[CrossRef] [Google Scholar]
  63. Palenik, B., Ren, Q., Dupont, C. L., Myers, G. S., Heidelberg, J. F., Badger, J. H., Madupu, R., Nelson, W. C., Brinkac, L. M. & other authors(2006). Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Natl Acad Sci U S A 103, 13555–13559.[CrossRef] [Google Scholar]
  64. Palmer, J. D. & Delwiche, C. F.(1998). The origin and evolution of plastids and their genomes. In Molecular Systematics of Plants II: DNA Sequencing, pp. 375–409. Edited by D. E. Sotis, P. E. Soltis & J. J. Doyle. Norwell, MA: Kluwer Academic.
  65. Rajaniemi, P., Hrouzek, P., Kastovska, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K.(2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55, 11–26.[CrossRef] [Google Scholar]
  66. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y.(1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef] [Google Scholar]
  67. Rivera, M. C. & Lake, J. A.(1992). Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76.[CrossRef] [Google Scholar]
  68. Robertson, B. R., Tezuka, N. & Watanabe, M. M.(2001). Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51, 861–871.[CrossRef] [Google Scholar]
  69. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W.(2002). Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68, 1180–1191.[CrossRef] [Google Scholar]
  70. Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N. A., Arellano, A., Coleman, M., Hauser, L. & other authors(2003). Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047.[CrossRef] [Google Scholar]
  71. Rokas, A. & Holland, P. W.(2000). Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15, 454–459.[CrossRef] [Google Scholar]
  72. Rokas, A., Williams, B. L., King, N. & Carroll, S. B.(2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.[CrossRef] [Google Scholar]
  73. Sánchez-Baracaldo, P., Hayes, P. K. & Blank, C. E.(2005). Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3, 145–165.[CrossRef] [Google Scholar]
  74. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A.(2002).tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef] [Google Scholar]
  75. Seo, P. S. & Yokota, A.(2003). The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 49, 191–203.[CrossRef] [Google Scholar]
  76. Shi, T. & Falkowski, P. G.(2008). Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci U S A 105, 2510–2515.[CrossRef] [Google Scholar]
  77. Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A.(2007). Evidence for a Gram-positive, eubacterial root of the tree of life. Mol Biol Evol 24, 1761–1768.[CrossRef] [Google Scholar]
  78. Sneath, P. H. A.(2001). Numerical taxonomy. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 39–42. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  79. Sneath, P. H. A. & Sokal, R. R.(1973).Numerical Taxonomy: the Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman.
  80. Stiller, J. W.(2007). Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 12, 391–396.[CrossRef] [Google Scholar]
  81. Sugita, C., Ogata, K., Shikata, M., Jikuya, H., Takano, J., Furumichi, M., Kanehisa, M., Omata, T., Sugiura, M. & Sugita, M.(2007). Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization. Photosynth Res 93, 55–67.[CrossRef] [Google Scholar]
  82. Swingley, W. D., Blankenship, R. E. & Raymond, J.(2008a). Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25, 643–654.[CrossRef] [Google Scholar]
  83. Swingley, W. D., Chen, M., Cheung, P. C., Conrad, A. L., Dejesa, L. C., Hao, J., Honchak, B. M., Karbach, L. E., Kurdoglu, A. & other authors(2008b). Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci U S A 105, 2005–2010.[CrossRef] [Google Scholar]
  84. Turner, S., Pryer, K. M., Miao, V. P. & Palmer, J. D.(1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46, 327–338.[CrossRef] [Google Scholar]
  85. Van de Peer, Y. & De Wachter, R.(1994).treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570. [Google Scholar]
  86. Whatley, J. M.(1993). The endosymbiotic origin of chloroplasts. Int Rev Cytol 144, 259–299. [Google Scholar]
  87. Wilmotte, A. & Golubic, S.(1991). Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Arch Hydrobiol 64, 1–24. [Google Scholar]
  88. Wilmotte, A. & Herdman, M.(2001). Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 487–493. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  89. Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F. & Papke, R. T.(2006). Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16, 1099–1108.[CrossRef] [Google Scholar]

Data & Media loading...


List of proteins used in phylogenetic analyses [ PDF] (61 KB)


[ Single PDF file] (446 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error