1887

Abstract

Two strictly aerobic, Gram-negative, rod-shaped bacteria containing photosynthesis-related genes, designated strains CL-SK44 and CL-JM1, were isolated from a culture of the marine phytoplankton sp. and coastal seawater from Korea, respectively. Phylogenetic analysis of 16S rRNA gene sequences revealed that the two strains were related to members of the genera (95.3–96.7 % similarity), (95.3–96.0 %) and (95.6 %) in the family . However, the two novel strains did not form a robust clade with any species of the clade, forming a distinct clade. The major polar lipids of the strains were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified aminolipid and an unidentified lipid, profiles that were distinguishable from those of the related genera examined. Although the level of 16S rRNA gene sequence similarity between strains CL-SK44 and CL-JM1 was very high (99.1 %), DNA–DNA relatedness between the strains was 13 %, suggesting that they represent genomically distinct species. In addition, the two strains could be differentiated based on the presence of a minor polar lipid, on the hydrolysis of gelatin and the utilization of carbon sources. Based on the data from the present study, strains CL-SK44 and CL-JM1 are considered to represent separate novel species of a new genus of the family , for which the names gen. nov., sp. nov. (type species) and sp. nov. are proposed. The type strains of and are CL-SK44 (=KCCM 90070=JCM 15447) and CL-JM1 (=KCCM 90071=JCM 15446), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005462-0
2009-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1568.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005462-0&mimeType=html&fmt=ahah

References

  1. Allgaier, M., Uphoff, H., Felske, A. & Wagner-Döbler, I. ( 2003; ). Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69, 5051–5059.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Arahal, D. R., Macián, M. C., Garay, E. & Pujalte, M. J. ( 2005; ). Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 55, 2371–2376.[CrossRef]
    [Google Scholar]
  4. Biebl, H., Allgaier, M., Lünsdorf, H., Pukall, R., Tindall, B. J. & Wagner-Döbler, I. ( 2005a; ). Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 55, 2377–2383.[CrossRef]
    [Google Scholar]
  5. Biebl, H., Allgaier, M., Tindall, B. J., Koblizek, M., Lünsdorf, H., Pukall, R. & Wagner-Döbler, I. ( 2005b; ). Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55, 1089–1096.[CrossRef]
    [Google Scholar]
  6. Biebl, H., Tindall, B. J., Pukall, R., Lünsdorf, H., Allgaier, M. & Wagner-Döbler, I. ( 2006; ). Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56, 821–826.[CrossRef]
    [Google Scholar]
  7. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  8. Buchan, A., González, J. M. & Moran, M. A. ( 2005; ). Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71, 5665–5677.[CrossRef]
    [Google Scholar]
  9. Cho, J.-C. & Giovannoni, S. J. ( 2004; ). Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. Int J Syst Evol Microbiol 54, 1129–1136.[CrossRef]
    [Google Scholar]
  10. Cho, J.-C. & Giovannoni, S. J. ( 2006; ). Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 56, 855–859.[CrossRef]
    [Google Scholar]
  11. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & other authors ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  12. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  13. Englen, M. D. & Kelley, L. C. ( 2000; ). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef]
    [Google Scholar]
  14. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  15. Garrity, G. M., Bell, J. A. & Liburn, T. ( 2005; ). Family I. Rhodobacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, pp. 161–229. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  16. Gu, J., Guo, B., Wang, Y.-N., Yu, S.-L., Inamori, R., Qu, R., Ye, Y.-G. & Wu, X.-L. ( 2007; ). Oceanicola nanhaiensis sp. nov., isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 57, 157–160.[CrossRef]
    [Google Scholar]
  17. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  18. Hwang, C. Y. & Cho, B. C. ( 2008; ). Cucumibacter marinus gen. nov., sp. nov., a marine bacterium in the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 58, 1591–1597.[CrossRef]
    [Google Scholar]
  19. Ivanova, E. P., Gorshkova, N. M., Sawabe, T., Zhukova, N. V., Hayashi, K., Kurilenko, V. V., Alexeeva, Y., Buljan, V., Nicolau, D. V. & other authors ( 2004; ). Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). Int J Syst Evol Microbiol 54, 475–480.[CrossRef]
    [Google Scholar]
  20. Jeon, Y.-S., Chung, H., Park, S., Hur, I., Lee, J.-H. & Chun, J. ( 2005; ). jphydit: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef]
    [Google Scholar]
  21. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  22. Kim, M. K., Schubert, K., Im, W.-T., Kim, K.-H., Lee, S.-T. & Overmann, J. ( 2007a; ). Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol 57, 1527–1534.[CrossRef]
    [Google Scholar]
  23. Kim, Y.-G., Choi, D. H., Hyun, S. & Cho, B. C. ( 2007b; ). Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57, 409–413.[CrossRef]
    [Google Scholar]
  24. Komagata, K. & Suzuki, K. ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  25. Labrenz, M., Tindall, B. J., Lawson, P. A., Collins, M. D., Schumann, P. & Hirsch, P. ( 2000; ). Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbiol 50, 303–313.[CrossRef]
    [Google Scholar]
  26. Lafay, B., Ruimy, R., de Traubenberg, C. R., Breittmayer, V., Gauthier, M. J. & Christen, R. ( 1995; ). Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45, 290–296.[CrossRef]
    [Google Scholar]
  27. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  28. Lemos, M. L., Toranzo, A. E. & Barja, J. L. ( 1985; ). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541–1543.
    [Google Scholar]
  29. Lin, K.-Y., Sheu, S.-Y., Chang, P.-S., Cho, J.-C. & Chen, W.-M. ( 2007; ). Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 57, 1625–1629.[CrossRef]
    [Google Scholar]
  30. Lyman, J. & Fleming, R. H. ( 1940; ). Composition of sea water. J Mar Res 3, 134–146.
    [Google Scholar]
  31. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  32. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T. ( 2006; ). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56, 1293–1304.[CrossRef]
    [Google Scholar]
  33. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  34. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, K. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  35. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  36. Oz, A., Sabehi, G., Koblízek, M., Massana, R. & Béjà, O. ( 2005; ). Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol 71, 344–353.[CrossRef]
    [Google Scholar]
  37. Park, J. R., Bae, J.-W., Nam, Y.-D., Chang, H.-W., Kwon, H.-Y., Quan, Z.-X. & Park, Y.-H. ( 2007; ). Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. Int J Syst Evol Microbiol 57, 692–695.[CrossRef]
    [Google Scholar]
  38. Pukall, R., Buntefuß, D., Frühling, A., Rohde, M., Kroppenstedt, R. M., Burghardt, J., Lebaron, P., Bernard, L. & Stackebrandt, E. ( 1999; ). Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria. Int J Syst Bacteriol 49, 513–519.[CrossRef]
    [Google Scholar]
  39. Rüger, H.-J. & Höfle, M. G. ( 1992; ). Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 42, 133–143.[CrossRef]
    [Google Scholar]
  40. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  41. Shiba, T. ( 1991; ). Roseobacter litoralis gen. nov. sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14, 140–145.[CrossRef]
    [Google Scholar]
  42. Shiba, T., Simidu, U. & Taga, N. ( 1979; ). Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38, 43–45.
    [Google Scholar]
  43. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  44. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
  45. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  46. Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K. & Swings, J. ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  47. Wagner-Döbler, I., Rheims, H., Felske, A., El-Ghezal, A., Flade-Schröder, D., Laatsch, H., Lang, S., Pukall, R. & Tindall, B. J. ( 2004; ). Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54, 1177–1184.[CrossRef]
    [Google Scholar]
  48. Yi, H. & Chun, J. ( 2004; ). Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54, 1295–1299.[CrossRef]
    [Google Scholar]
  49. Yi, H. & Chun, J. ( 2006; ). Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 44, 171–176.
    [Google Scholar]
  50. Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. ( 2004; ). Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat Microb Ecol 36, 165–170.[CrossRef]
    [Google Scholar]
  51. Yoon, J.-H., Lee, M.-H. & Oh, T.-K. ( 2004; ). Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54, 2231–2235.[CrossRef]
    [Google Scholar]
  52. Yoon, J.-H., Kang, S.-J. & Oh, T.-K. ( 2007a; ). Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 57, 73–76.[CrossRef]
    [Google Scholar]
  53. Yoon, J.-H., Kang, S.-J., Lee, M.-H. & Oh, T.-K. ( 2007b; ). Description of Sulfitobacter donghicola sp. nov., isolated from seawater of the East Sea in Korea, transfer of Staleya guttiformis Labrenz et al. 2000 to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov. and emended description of the genus Sulfitobacter. Int J Syst Evol Microbiol 57, 1788–1792.[CrossRef]
    [Google Scholar]
  54. Yoon, J.-H., Lee, S.-Y., Kang, S.-J., Lee, C.-H. & Oh, T.-K. ( 2007c; ). Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 57, 542–547.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005462-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005462-0
Loading

Data & Media loading...

Supplements

Cellular fatty acid composition of strains CL-SK44 , CL-JM1 and other phylogenetically related genera of the family . [ PDF] 117 KB

PDF

Two-dimensional TLC of the polar lipids of strains CL-SK44 (a) and CL-JM1 (b). [ PDF] 33 KB

PDF

Neighbour-joining tree derived from 16S rRNA gene sequences for strains CL-SK44 , CL-JM1 and most members in the family . [ PDF] 63 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error