1887

Abstract

A Gram-negative, non-spore-forming, non-motile bacterium, strain A8-7, was isolated from fresh water of a slightly alkaline lake, Longhu Lake, in Daqing, north-east China, and its taxonomic position was studied by using a polyphasic approach. Strain A8-7 was aerobic, heterotrophic and positive for catalase and oxidase. It grew at 20–37 °C (optimum 30 °C) and pH 5.5–10.5 (optimum pH 7.5) and in the presence of 0–3 % (w/v) NaCl. It formed pink-pigmented, smooth and circular colonies, 1–2 mm in diameter, on R3A-V agar plates after incubation at 30 °C for 3 days. Cells of strain A8-7 were rods, 0.2–0.4 μm wide and 1.6–4.0 μm long. The major fatty acids (>10 %) were iso-C (40.3 %) and summed feature 3 (C 7 and/or iso-C 2-OH; 12.1 %). The menaquinone was MK-7. The DNA G+C content was 43 mol% ( ). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain A8-7 was phylogenetically related to members of the genus , with sequence similarities of 92.6–95.2 %, the highest sequence similarity being to the sequence from IMSNU 14012. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain A8-7 was considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is A8-7 (=CGMCC 1.7030 =NBRC 104237).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005215-0
2009-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1759.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005215-0&mimeType=html&fmt=ahah

References

  1. Ahmed, I., Yokota, A. & Fujiwara, T. ( 2007; ). Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 57, 986–992.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Bowman, J. P., Nichols, C. M. & Gibson, J. A. E. ( 2003; ). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53, 1343–1355.[CrossRef]
    [Google Scholar]
  4. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  5. Copa-Patiño, J. L., Arenas, M., Soliveri, J., Sánchez-Porro, C. & Ventosa, A. ( 2008; ). Algoriphagus hitonicola sp. nov., isolated from an athalassohaline lagoon. Int J Syst Evol Microbiol 58, 424–428.[CrossRef]
    [Google Scholar]
  6. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  7. Dong, X.-Z. & Cai, M.-Y. ( 2001; ). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press (English translation).
  8. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  10. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  11. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  12. Kim, S. B., Falconer, C., Williams, E. & Goodfellow, M. ( 1998; ). Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48, 59–68.[CrossRef]
    [Google Scholar]
  13. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  14. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  15. McCammon, S. A. & Bowman, J. P. ( 2000; ). Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salgentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50, 1055–1063.[CrossRef]
    [Google Scholar]
  16. Nedashkovskaya, O. I., Vancanneyt, M., Van Trappen, S., Vandemeulebroecke, K., Lysenko, A. M., Rohde, M., Falsen, E., Frolova, G. M., Mikhailov, V. V. & Swings, J. ( 2004; ). Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. Int J Syst Evol Microbiol 54, 1757–1764.[CrossRef]
    [Google Scholar]
  17. Nedashkovskaya, O. I., Kim, S. B., Kwon, K. K., Shin, D. S., Luo, X., Kim, S.-J. & Mikhailov, V. V. ( 2007; ). Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. Int J Syst Evol Microbiol 57, 1988–1994.[CrossRef]
    [Google Scholar]
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  20. Tiago, I., Mendes, V., Pires, C., Morais, P. V. & Verissimo, A. ( 2006; ). Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29, 100–108.[CrossRef]
    [Google Scholar]
  21. Van Trappen, S., Vandecandelaere, I., Mergaert, J. & Swings, J. ( 2004; ). Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54, 1969–1973.[CrossRef]
    [Google Scholar]
  22. Yi, H. & Chun, J. ( 2004; ). Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54, 157–162.[CrossRef]
    [Google Scholar]
  23. Yoon, J.-H., Yeo, S.-H. & Oh, T.-K. ( 2004; ). Hongiella marincola sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54, 1845–1848.[CrossRef]
    [Google Scholar]
  24. Yoon, J.-H., Kang, S.-J., Jung, S.-Y., Lee, C.-H. & Oh, T.-K. ( 2005a; ). Algoriphagus yeomjeoni sp. nov., isolated from a marine solar saltern in the Yellow Sea, Korea. Int J Syst Evol Microbiol 55, 865–870.[CrossRef]
    [Google Scholar]
  25. Yoon, J.-H., Kang, S.-J. & Oh, T.-K. ( 2005b; ). Algoriphagus locisalis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 55, 1635–1639.[CrossRef]
    [Google Scholar]
  26. Yoon, J.-H., Lee, M.-H., Kang, S.-J. & Oh, T.-K. ( 2006; ). Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 56, 777–780.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005215-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005215-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1759 - 1763

Maximum-parsimony and maximum-likelihood trees based on 16S rRNA gene sequences.

Cellular fatty acid contents of strain A8-7 and the type strains of other species.

[PDF file of Supplementary Fig. S1 and Table S1](138 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error