gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA Free

Abstract

An anaerobic thermophilic bacterium, designated strain JW/SA-NV4, was isolated from a xylan-supplemented enrichment culture from Trego hot spring located within the Black Rock Desert (NV, USA). Cells were generally straight or slightly bent rod-shaped, 0.4–0.8 μm in width and 3–6 μm in length during exponential growth. Cells from stationary phase were variable in size and shape, showing curved or bent morphology. Motility was not seen and flagella were not observed in electron micrographs. Sporulation was not observed. Strain JW/SA-NV4 stained Gram-negative but is phylogenetically Gram-type positive. Growth occurred at pH 6.8–8.8, with optimum growth at pH 8.4; no growth occurred at pH 9.0 or above or at 6.5 or below. With glucose or xylose as the carbon source, strain JW/SA-NV4 grew at 44–74 °C; no growth occurred at 76 °C or above or at 42 °C or below. However, the optimum temperature was 62 and 66 °C when grown on glucose and xylose, respectively. The shortest doubling time observed with glucose was approximately 4 h, and with xylose approximately 3.4 h. Strain JW/SA-NV4 tolerated an atmosphere containing up to 0.1 % O; no growth occurred at a gas atmosphere of 0.2 % O. Chemo-organotrophic growth occurred with xylose, glucose, mannose, xylan, pyruvate, fructose, ribose, Casamino acids, mannitol, tryptone, peptone, cellobiose and yeast extract. When grown in mineral media containing 1 g yeast extract l as an electron donor, thiosulfate and sulfur were reduced to sulfide. The G+C content of the DNA was 38.6 mol% (HPLC). 16S rRNA gene sequence analysis placed strain JW/SA-NV4 within the order and within the Incertae Sedis Family III, specifically between taxa classified within the genera and . The closest phylogenetic neighbours were JW/IW-1228P (94.2 % 16S rRNA gene sequence similarity) and JW/YJL-1230-7/2 (94.0 %) [Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J. (2005). , 375–383]. Based on physiological and genotypic characteristics, strain JW/SA-NV4 (=DSM 18802=ATCC BAA-1454) is proposed to represent the type strain of a novel species in a novel genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005207-0
2009-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2685.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005207-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Stromley, J., Devereux, R., Key, R. & Stahl, D. A.(1992). Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58, 614–623. [Google Scholar]
  2. Biely, P.(1985). Microbial xylanolytic systems. Trends Biotechnol 3, 286–290.[CrossRef] [Google Scholar]
  3. Drake, H., Gößner, A. & Daniel, S.(2008). Old acetogens, new light. In Incredible Anaerobes: From Physiology to Genomics to Fuels, pp. 100–128. Edited by J. Wiegel, R. J. Maier & M. W. W. Adams. Boston: Blackwell Publishing.
  4. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. & Foust, T. D.(2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807.[CrossRef] [Google Scholar]
  5. Hose, R. K. & Taylor, B. E.(1974).Geothermal systems of northern Nevada: USGS-OFR-74–271, Geological Survey, Reston, VA (USA).
  6. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  7. Kevbrin, V. V., Romanek, C. S. & Wiegel, J.(2004). Alkalithermophiles: a double challenge from extreme environments. In Origins: Genesis, Evolution and Diversity of Life, pp. 395–412. Edited by J. Seckbach. Dordrecht: Kluwer Academic Publishers.
  8. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  9. Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J.(2005).Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9, 375–383.[CrossRef] [Google Scholar]
  10. Ljungdahl, L. G. & Wiegel, J.(1986). Working with anaerobic bacteria. In Manual of Industrial Microbiology, pp. 115–127. Edited by A. L. Demain & N. A. Solomon. Washington, DC: American Society for Microbiology.
  11. Loy, A., Maixner, F., Wagner, M. & Horn, M.(2007). probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35, D800[CrossRef] [Google Scholar]
  12. Ludwig, W., Schleifer, K. & Whitman, W.(2009). Revised road map to the phylum Firmicutes. In Bergey's Manual of Systematic Bacteriology, vol. 3. Edited by P. De Vos, G. Garrity, D. Jones, N. Krieg, W. Ludwig, F. Rainey, K. Schleifer & W. Whitman. New York: Springer-Verlag. (in Press)
  13. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  14. Pearson, A., Huang, Z., Ingalls, A. E., Romanek, C. S., Wiegel, J., Freeman, K. H., Smittenberg, R. H. & Zhang, C. L.(2004). Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70, 5229–5237.[CrossRef] [Google Scholar]
  15. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  16. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  17. Schleifer, K. H. & Seidl, P. H.(1985). Chemical composition and structure of murein. In Chemical Methods in Bacterial Systematics, pp. 201–219. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  18. Schloss, P. D. & Handelsman, J.(2004). Status of the microbial census. Microbiol Mol Biol Rev 68, 686–691.[CrossRef] [Google Scholar]
  19. Shao, W., DeBlois, S. & Wiegel, J.(1995). A high-molecular-weight, cell-associated xylanase isolated from exponentially growing Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61, 937–940. [Google Scholar]
  20. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596[CrossRef] [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  22. Wagner, I. & Wiegel, J.(2008). Diversity of thermophilic anaerobes. In Incredible Anaerobes: From Physiology to Genomics to Fuels, pp. 1–43. Edited by J. Wiegel, R. J. Maier & M. W. W. Adams. Boston: Blackwell Publishing.
  23. Wagner, I. D., Zhao, W., Zhang, C., Romanek, C. S., Rohde, M. & Wiegel, J.(2008).Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia. Int J Syst Evol Microbiol 58, 2565–2573.[CrossRef] [Google Scholar]
  24. White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J.(1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62.[CrossRef] [Google Scholar]
  25. Widdel, F. & Bak, F.(1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, pp. 3352–3378. Edited by A. Balows, H. Trüper, M. Dworkin, W. Harder & H. Schleifer. New York: Springer.
  26. Wiegel, J.(1981). Distinction between gram reaction and the gram type of bacteria. Int J Syst Bacteriol 31, 88[CrossRef] [Google Scholar]
  27. Wiegel, J.(1998). Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2, 257–267.[CrossRef] [Google Scholar]
  28. Wiegel, J. & Kevbrin, V. V.(2004). Alkalithermophiles. Biochem Soc Trans 32, 193–198.[CrossRef] [Google Scholar]
  29. Wilson, K.(1997). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing and Wiley-Interscience.
  30. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I.(2002).Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef] [Google Scholar]
  31. Zhang, C. L., Fouke, B. W., Bonheyo, G. T., Peacock, A. D., White, D. C., Huang, Y. & Romanek, C. S.(2004). Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): implications for biogeochemical dynamics in hot-spring systems. Geochim Cosmochim Acta 68, 3157–3169.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005207-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005207-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed